ﻻ يوجد ملخص باللغة العربية
We construct a Bayesian inference deep learning machine for parameter estimation of gravitational wave events of binaries of black hole coalescence. The structure of our deep Bayseian machine adopts the conditional variational autoencoder scheme by conditioning both the gravitational wave strains and the variations of amplitude spectral density of the detector noise. We show that our deep Bayesian machine is capable of yielding the posteriors compatible with the ones from the nest sampling method, and of fighting against the noise outliers. We also apply our deep Bayesian machine to the LIGO/Virgo O3 events, and find that conditioning detector noise to fight against its drifting is relevant for the events with medium signal-to-noise ratios.
One of the main bottlenecks in gravitational wave (GW) astronomy is the high cost of performing parameter estimation and GW searches on the fly. We propose a novel technique based on Reduced Order Quadratures (ROQs), an application and data-specific
Folding uncertainty in theoretical models into Bayesian parameter estimation is necessary in order to make reliable inferences. A general means of achieving this is by marginalizing over model uncertainty using a prior distribution constructed using
Signal extraction out of background noise is a common challenge in high precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal to noise ratio of the detection, witness sensors are often us
By listening to gravity in the low frequency band, between 0.1 mHz and 1 Hz, the future space-based gravitational-wave observatory LISA will be able to detect tens of thousands of astrophysical sources from cosmic dawn to the present. The detection a
Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain