ﻻ يوجد ملخص باللغة العربية
The LUXE experiment (Laser Und XFEL Experiment) is a new experiment in planning at DESY Hamburg using the electron beam of the European XFEL. LUXE is intended to study collisions between a high-intensity optical laser and up to 16.5 GeV electrons from the Eu.XFEL electron beam, or, alternatively, high-energy secondary photons. The physics objective of LUXE are processes of Quantum Electrodynamics (QED) at the strong-field frontier, where QED is non-perturbative. This manifests itself in the creation of physical electron-positron pairs from the QED vacuum. LUXE intends to measure the positron production rate in a new physics regime at an unprecedented laser intensity. Parasitically, the high-intensity Compton photon beam of LUXE can be used to search for physics beyond the Standard Model.
The vast majority of QED results are obtained in relatively weak fields and so in the framework of perturbation theory. However, forthcoming laser facilities providing extremely high fields can be used to enter not-yet-studied regimes. Here, a scheme
A nonlinear interaction between photons is observed in a process that involves charge sources. To observe this process in a vacuum, there are a growing number of theoretical and experimental studies. This process may contain exotic contribution from
The MEG experiment took data at the Paul Scherrer Institute in the years 2009--2013 to test the violation of the lepton flavour conservation law, which originates from an accidental symmetry that the Standard Model of elementary particle physics has,
We compute the non-perturbative contribution of semileptonic tensor operators $(bar q sigma^{mu u} q)(bar ell sigma_{mu u} ell)$ to the purely leptonic process $mu to e gamma$ and to the electric and magnetic dipole moments of charged leptons by ma
The analysis of a combined data set, totaling 3.6 times 10^14 stopped muons on target, in the search for the lepton flavour violating decay mu^+ -> e^+ gamma is presented. The data collected by the MEG experiment at the Paul Scherrer Institut show no