ﻻ يوجد ملخص باللغة العربية
Networks determine our social circles and the way we cooperate with others. We know that topological features like hubs and degree assortativity affect cooperation, and we know that cooperation is favoured if the benefit of the altruistic act divided by the cost exceeds the average number of neighbours. However, a simple rule that would predict cooperation transitions on an arbitrary network has not yet been presented. Here we show that the unique sequence of degrees in a network can be used to predict at which game parameters major shifts in the level of cooperation can be expected, including phase transitions from absorbing to mixed strategy phases. We use the evolutionary prisoners dilemma game on random and scale-free networks to demonstrate the prediction, as well as its limitations and possible pitfalls. We observe good agreements between the predictions and the results obtained with concurrent and Monte Carlo methods for the update of the strategies, thus providing a simple and fast way to estimate the outcome of evolutionary social dilemmas on arbitrary networks without the need of actually playing the game.
In the framework of the evolutionary dynamics of the Prisoners Dilemma game on complex networks, we investigate the possibility that the average level of cooperation shows hysteresis under quasi-static variations of a model parameter (the temptation
We study the evolution of cooperation in spatial Prisoners dilemma games with and without extortion by adopting aspiration-driven strategy updating rule. We focus explicitly on how the strategy updating manner (whether synchronous or asynchronous) an
Pro-social punishment is a key driver of harmonious and stable society. However, this institution is vulnerable to corruption since law-violators can avoid sanctioning by paying bribes to corrupt law-enforcers. Consequently, to understand how altruis
Recent empirical studies suggest that heavy-tailed distributions of human activities are universal in real social dynamics [Muchnik, emph{et al.}, Sci. Rep. textbf{3}, 1783 (2013)]. On the other hand, community structure is ubiquitous in biological a
Understanding the resilience of infrastructures such as transportation network has significant importance for our daily life. Recently, a homogeneous spatial network model was developed for studying spatial embedded networks with characteristic link