ترغب بنشر مسار تعليمي؟ اضغط هنا

A High Spatial Resolution Muon Tomography Prototype System based on Micromegas Detector

221   0   0.0 ( 0 )
 نشر من قبل Yu Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic ray muon has strong penetrating power and no ionizing radiation hazards, which make cosmic ray muon an ideal probe to detect the special nuclear materials (SNM). However, the existing muon tomography experiments have the disadvantages of long imaging time and poor imaging accuracy, due to the low event rate of muons and small interaction cross section between muons and material nucleus. To optimize the imaging quality and imaging time, high spatial resolution muon tomography facility should be investigated more deeply. Micromegas with its high spatial resolution and large detection area is one of the suitable detectors for the muon tomography facility. In this paper, a high spatial muon tomography prototype was presented. The Micromegas detector was based on thermal bonding technique, which was easy to manufacture and can achieve good performance. A novel multiplexing method base on position encoding was introduced in this research to reduce the channels in an order of magnitude. Then, this paper carried out the research of a general and scalable muon imaging readout system, which employed a discrete architecture of front-end and back-end electronics and can be adapted to different scales of muon tomography experiments. Finally, a tomography prototype system was designed and implemented, including eight Micromegas detectors, four front-end electronics cards and a data acquisition board. Test results showed that this prototype can image objects with 2cm size and distinguish different materials.



قيم البحث

اقرأ أيضاً

The multi-pad PICOSEC-Micromegas is an improved detector prototype with a segmented anode, consisting of 19 hexagonal pads. Detailed studies are performed with data collected in a muon beam over four representative pads. We demonstrate that such a de vice, scalable to a larger area, provides excellent time resolution and detection efficiency. As expected from earlier single-cell device studies, we measure a time resolution of approximately 25 picoseconds for charged particles hitting near the anode pad centers, and up to 30 picoseconds at the pad edges. Here, we study in detail the effect of drift gap thickness non-uniformity on the timing performance and evaluate impact position based corrections to obtain a uniform timing response over the full detector coverage.
731 - Xuewu Wang , Ming Zeng , Zhi Zeng 2015
Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm x 73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been teste d and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.
A semiconductor tracker for muon scattering tomography is presented. The tracker contains silicon strip sensors with an $80,mu$m pitch, precision mechanics and integrated cooling. The electronic readout of the sensors is performed by a scalable, inex pensive, flexible, FPGA-based system, which is demonstrated to achieve an event rate of $30,$kHz. The tracker performance is compared with a Geant4 simulation. A scattering angle resolution compatible with $1.5,$mrad at the $4,$GeV average cosmic ray muon energy is demonstrated. Images of plastic, iron and lead samples are obtained using an Angle Statistics Reconstruction algorithm. The images demonstrate good contrast between low and high atomic number materials.
163 - D. Abbaneo , S. Bally , H. Postema 2010
In view of a possible extension of the forward CMS muon detector system and future LHC luminosity upgrades, Micro-Pattern Gas Detectors (MPGDs) are an appealing technology. They can simultaneously provide precision tracking and fast trigger informati on, as well as sufficiently fine segmentation to cope with high particle rates in the high-eta region at LHC and its future upgrades. We report on the design and construction of a full-size prototype for the CMS endcap system, the largest Triple-GEM detector built to-date. We present details on the 3D modeling of the detector geometry, the implementation of the readout strips and electronics, and the detector assembly procedure.
High-energy muons generated from cosmic-ray particle showers have been shown to exhibit properties ideal for imaging the interior of large structures. This paper explores the possibility of using a single portable muon detector in conjunction with im age reconstruction methods used in nuclear medicine to reconstruct a 3D image of the interior of critical infrastructure such as the Zero Energy Deuterium (ZED-2) research reactor at Canadian Nuclear Laboratories Chalk River site. The ZED-2 reactor core and muon detector arrangement are modeled in GEANT4 and Monte Carlo measurements of the resultant muon throughput and angular distribution at several angles of rotation around the reactor are generated. Statistical analysis is then performed on these measurements based on the well-defined flux and angular distribution of muons expected near the surface of the earth. The results of this analysis are shown to produce reconstructed images of the spatial distribution of nuclear fuel within the core for multiple fuel configurations. This one-sided tomography concept is a possible candidate for examining the internal structure of larger critical facilities, for example the Fukushima Daiichi power plant where the integrity of the containment infrastructure and the location of the reactor fuel is unknown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا