ﻻ يوجد ملخص باللغة العربية
We develop lower bounds on communication in the memory hierarchy or between processors for nested bilinear algorithms, such as Strassens algorithm for matrix multiplication. We build on a previous framework that establishes communication lower bounds by use of the rank expansion, or the minimum rank of any fixed size subset of columns of a matrix, for each of the three matrices encoding the bilinear algorithm. This framework provides lower bounds for any way of computing a bilinear algorithm, which encompasses a larger space of algorithms than by fixing a particular dependency graph. Nested bilinear algorithms include fast recursive algorithms for convolution, matrix multiplication, and contraction of tensors with symmetry. Two bilinear algorithms can be nested by taking Kronecker products between their encoding matrices. Our main result is a lower bound on the rank expansion of a matrix constructed by a Kronecker product derived from lower bounds on the rank expansion of the Kronecker products operands. To prove this bound, we map a subset of columns from a submatrix to a 2D grid, collapse them into a dense grid, expand the grid, and use the size of the expanded grid to bound the number of linearly independent columns of the submatrix. We apply the rank expansion lower bounds to obtain novel communication lower bounds for nested Toom-Cook convolution, Strassens algorithm, and fast algorithms for partially symmetric contractions.
Randomized algorithms provide solutions to two ubiquitous problems: (1) the distributed calculation of a principal component analysis or singular value decomposition of a highly rectangular matrix, and (2) the distributed calculation of a low-rank ap
The prior independent framework for algorithm design considers how well an algorithm that does not know the distribution of its inputs approximates the expected performance of the optimal algorithm for this distribution. This paper gives a method tha
Given a graph $G = (V,E)$, an $(alpha, beta)$-ruling set is a subset $S subseteq V$ such that the distance between any two vertices in $S$ is at least $alpha$, and the distance between any vertex in $V$ and the closest vertex in $S$ is at most $beta$
In this paper, we study lower bounds for randomized solutions to the maximal independent set (MIS) and connected dominating set (CDS) problems in the dual graph model of radio networks---a generalization of the standard graph-based model that now inc
This paper proves strong lower bounds for distributed computing in the CONGEST model, by presenting the bit-gadget: a new technique for constructing graphs with small cuts. The contribution of bit-gadgets is twofold. First, developing careful spars