ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing complex optical phenomena through vectorial metrics

92   0   0.0 ( 0 )
 نشر من قبل Chao He
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advances in vectorial polarisation-resolved imaging are bringing new capabilities to applications ranging from fundamental physics through to clinical diagnosis. Imaging polarimetry requires determination of the Mueller matrix (MM) at every point, providing a complete description of an objects vectorial properties. Despite forming a comprehensive representation, the MM does not usually provide easily-interpretable information about the objects internal structure. Certain simpler vectorial metrics are derived from subsets of the MM elements. These metrics permit extraction of signatures that provide direct indicators of hidden optical properties of complex systems, while featuring an intriguing asymmetry about what information can or cannot be inferred via these metrics. We harness such characteristics to reveal the spin-Hall effect of light, infer microscopic structure within laser-written photonic waveguides, and conduct rapid pathological diagnosis through analysis of healthy and cancerous tissue. This provides new insight for the broader usage of such asymmetric inferred vectorial information.



قيم البحث

اقرأ أيضاً

74 - Li Zhang , Fei Lin , Xiaodong Qiu 2018
Nonlinear optical generation has been a well-established way to realize frequency conversion in nonlinear optics, whereas previous studies were just focusing on the scalar light fields. Here we report a concise yet efficient experiment to realize fre quency conversion from vector fields to vector fields based on the vectorial nonlinear optical process, e.g., the second-harmonic generation. Our scheme is based on two cascading type-I phase-matching BBO crystals, whose fast axes are configured elaborately to be perpendicular to each other. Without loss of generality, we take the full Poincare beams as the vectorial light fields in our experiment, and visualize the structured features of vectorial second-harmonic fields by using Stokes polarimetry. The interesting doubling effect of polarization topological index, i.e., a low-order full Poincare beam is converted to a high-order one are demonstrated. However, polarization singularities of both C-points and L-lines are found to keep invariant during the SHG process. Our scheme can be straightforwardly generalized to other nonlinear optical effects. Our scheme can offer a deeper understanding on the interaction of vectorial light with media and may find important applications in optical imaging, optical communication and quantum information science.
Optical aberrations have been studied for centuries, placing fundamental limits on the achievable resolution in focusing and imaging. In the context of structured light, the spatial pattern is distorted in amplitude and phase, often arising from opti cal imperfections, element misalignment, or even from dynamic processes due to propagation through perturbing media such as living tissue, free-space, underwater and optical fibre. Here we show that the polarisation inhomogeneity that defines vectorial structured light is immune to all such perturbations, provided they are unitary. By way of example, we study the robustness of vector vortex beams to tilted lenses and atmospheric turbulence, both highly asymmetric aberrations, demonstrating that the inhomogeneous nature of the polarisation remains unaltered from the near-field to far-field, even as the structure itself changes. The unitary nature of the channel allows us to undo this change through a simple lossless operation, tailoring light that appears robust in all its spatial structure regardless of the medium. Our insight highlights the overlooked role of measurement in describing classical vectorial light fields, in doing so resolving prior contradictory reports on the robustness of vector beams in complex media. This paves the way to the versatile application of vectorial structured light, even through non-ideal optical systems, crucial in applications such as imaging deep into tissue and optical communication across noisy channels.
Research on spatially-structured light has seen an explosion in activity over the past decades, powered by technological advances for generating such light, and driven by questions of fundamental science as well as engineering applications. In this r eview we highlight work on the interaction of vector light fields with atoms, and matter in general. This vibrant research area explores the full potential of light, with clear benefits for classical as well as quantum applications.
An electrical pulse E(t) is completely defined by its time-dependent amplitude and polarisation direction. For optical pulses the manipulation and characterisation of the light polarisation state is fundamental due to its relevance in several scienti fic and technological fields. In this work we demonstrate the complete temporal reconstruction of the electric field of few-cycle pulses with a complex time-dependent polarisation. Our experimental approach is based on extreme ultraviolet interferometry with isolated attosecond pulses and on the demonstration that the motion of an attosecond electron wave packet is sensitive to perturbing fields only along the direction of its motion. By exploiting the sensitivity of interferometric techniques and by controlling the emission and acceleration direction of the wave packet, pulses with energies as low as few hundreds of nanojoules can be reconstructed. Our approach opens the possibility to completely characterise the electric field of the pulses typically used in visible pump-probe spectroscopy.
Phase, polarization, amplitude and frequency represent the basic dimensions of light, playing crucial roles for both fundamental light-mater interactions and all major optical applications. Metasurface emerges as a compact platform to manipulate thes e knobs, but previous metasurfaces have limited flexibility to simultaneous control them. Here, we introduce a multi-freedom metasurface that can simultaneously and independently modulate phase, polarization and amplitude in an analytical form, and further realize frequency multiplexing by a k-space engineering technique. The multi-freedom metasurface seamlessly combine geometric Pancharatnam-Berry phase and detour phase, both of which are frequency-independent. As a result, it allows complex-amplitude vectorial hologram at various frequencies based on the same design strategy, without sophisticated nanostructure searching of massive size parameters. Based on this principle, we experimentally demonstrate full-color complex-amplitude vectorial meta-holograms in the visible with a metal-insulator metal architecture, unlocking the long-sought full potential of advanced light field manipulation through ultrathin metasurfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا