ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological axion electrodynamics and 4-group symmetry

75   0   0.0 ( 0 )
 نشر من قبل Ryo Yokokura
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study higher-form symmetries and a higher group in $(3+1)$-dimensional axion electrodynamics where the axion and photon are massive. A topological field theory describing topological excitations with the axion-photon coupling is obtained in the low energy limit, in which higher-form symmetries are specified. By using intersections of the symmetry generators, we find that the worldvolume of an axionic domain wall is topologically ordered. We further specify the underlying mathematical structure elegantly describing all salient features of the theory to be a 4-group.

قيم البحث

اقرأ أيضاً

We study higher-form global symmetries and a higher-group structure of a low-energy limit of $(3+1)$-dimensional axion electrodynamics in a gapped phase described by a topological action. We argue that the higher-form symmetries should have a semi-st rict 4-group (3-crossed module) structure by consistency conditions of couplings of the topological action to background gauge fields for the higher-form symmetries. We find possible t Hooft anomalies for the 4-group global symmetry, and discuss physical consequences.
We investigate a higher-group structure of massless axion electrodynamics in $(3+1)$ dimensions. By using the background gauging method, we show that the higher-form symmetries necessarily have a global semistrict 3-group (2-crossed module) structure , and exhibit t Hooft anomalies of the 3-group. In particular, we find a cubic mixed t Hooft anomaly between 0-form and 1-form symmetries, which is specific to the higher-group structure.
We study higher-form symmetries in a low-energy effective theory of a massless axion coupled with a photon in $(3+1)$ dimensions. It is shown that the higher-form symmetries of this system are accompanied by a semistrict 3-group (2-crossed module) st ructure, which can be found by the correlation functions of symmetry generators of the higher-form symmetries. We argue that the Witten effect and anomalous Hall effect in the axion electrodynamics can be described in terms of 3-group transformations.
We study the Casimir effect in axion electrodynamics. A finite $theta$-term affects the energy dispersion relation of photon if $theta$ is time and/or space dependent. We focus on a special case with linearly inhomogeneous $theta$ along the $z$-axis. Then we demonstrate that the Casimir force between two parallel plates perpendicular to the $z$-axis can be either attractive or repulsive, dependent on the gradient of $theta$. We call this repulsive component in the Casimir force induced by inhomogeneous $theta$ the anomalous Casimir effect.
Quantum parity conservation is verified at all orders in perturbation theory for a massless parity-even $U(1)times U(1)$ planar quantum electrodynamics (QED$_3$) model. The presence of two massless fermions requires the Lowenstein-Zimmermann (LZ) sub traction scheme, in the framework of the Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenstein (BPHZL) renormalization method, in order to subtract the infrared divergences induced by the ultraviolet subtractions at 1- and 2-loops, however thanks to the superrenormalizability of the model the ultraviolet divergences are bounded up to 2-loops. Finally, it is proved that the BPHZL renormalization method preserves parity for the model taken into consideration, contrary to what happens to the ordinary massless parity-even $U(1)$ QED$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا