ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Set Similarity for Dense Self-supervised Representation Learning

130   0   0.0 ( 0 )
 نشر من قبل Qiang Li Capasso
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

By considering the spatial correspondence, dense self-supervised representation learning has achieved superior performance on various dense prediction tasks. However, the pixel-level correspondence tends to be noisy because of many similar misleading pixels, e.g., backgrounds. To address this issue, in this paper, we propose to explore textbf{set} textbf{sim}ilarity (SetSim) for dense self-supervised representation learning. We generalize pixel-wise similarity learning to set-wise one to improve the robustness because sets contain more semantic and structure information. Specifically, by resorting to attentional features of views, we establish corresponding sets, thus filtering out noisy backgrounds that may cause incorrect correspondences. Meanwhile, these attentional features can keep the coherence of the same image across different views to alleviate semantic inconsistency. We further search the cross-view nearest neighbours of sets and employ the structured neighbourhood information to enhance the robustness. Empirical evaluations demonstrate that SetSim is superior to state-of-the-art methods on object detection, keypoint detection, instance segmentation, and semantic segmentation.

قيم البحث

اقرأ أيضاً

105 - Xiaoni Li , Yu Zhou , Yifei Zhang 2021
Self-supervised representation learning for visual pre-training has achieved remarkable success with sample (instance or pixel) discrimination and semantics discovery of instance, whereas there still exists a non-negligible gap between pre-trained mo del and downstream dense prediction tasks. Concretely, these downstream tasks require more accurate representation, in other words, the pixels from the same object must belong to a shared semantic category, which is lacking in the previous methods. In this work, we present Dense Semantic Contrast (DSC) for modeling semantic category decision boundaries at a dense level to meet the requirement of these tasks. Furthermore, we propose a dense cross-image semantic contrastive learning framework for multi-granularity representation learning. Specially, we explicitly explore the semantic structure of the dataset by mining relations among pixels from different perspectives. For intra-image relation modeling, we discover pixel neighbors from multiple views. And for inter-image relations, we enforce pixel representation from the same semantic class to be more similar than the representation from different classes in one mini-batch. Experimental results show that our DSC model outperforms state-of-the-art methods when transferring to downstream dense prediction tasks, including object detection, semantic segmentation, and instance segmentation. Code will be made available.
Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to col lect and can be scarce for medical imaging applications. Therefore, there is significant interest in learning representations from unlabelled raw data. In this paper, we propose a self-supervised learning approach to learn meaningful and transferable representations from medical imaging video without any type of human annotation. We assume that in order to learn such a representation, the model should identify anatomical structures from the unlabelled data. Therefore we force the model to address anatomy-aware tasks with free supervision from the data itself. Specifically, the model is designed to correct the order of a reshuffled video clip and at the same time predict the geometric transformation applied to the video clip. Experiments on fetal ultrasound video show that the proposed approach can effectively learn meaningful and strong representations, which transfer well to downstream tasks like standard plane detection and saliency prediction.
Recent progress in contrastive learning has revolutionized unsupervised representation learning. Concretely, multiple views (augmentations) from the same image are encouraged to map to the similar embeddings, while views from different images are pul led apart. In this paper, through visualizing and diagnosing classification errors, we observe that current contrastive models are ineffective at localizing the foreground object, limiting their ability to extract discriminative high-level features. This is due to the fact that view generation process considers pixels in an image uniformly. To address this problem, we propose a data-driven approach for learning invariance to backgrounds. It first estimates foreground saliency in images and then creates augmentations by copy-and-pasting the foreground onto a variety of backgrounds. The learning still follows the instance discrimination pretext task, so that the representation is trained to disregard background content and focus on the foreground. We study a variety of saliency estimation methods, and find that most methods lead to improvements for contrastive learning. With this approach (DiLo), significant performance is achieved for self-supervised learning on ImageNet classification, and also for object detection on PASCAL VOC and MSCOCO.
We propose a novel method for learning convolutional neural image representations without manual supervision. We use motion cues in the form of optical flow, to supervise representations of static images. The obvious approach of training a network to predict flow from a single image can be needlessly difficult due to intrinsic ambiguities in this prediction task. We instead propose a much simpler learning goal: embed pixels such that the similarity between their embeddings matches that between their optical flow vectors. At test time, the learned deep network can be used without access to video or flow information and transferred to tasks such as image classification, detection, and segmentation. Our method, which significantly simplifies previous attempts at using motion for self-supervision, achieves state-of-the-art results in self-supervision using motion cues, competitive results for self-supervision in general, and is overall state of the art in self-supervised pretraining for semantic image segmentation, as demonstrated on standard benchmarks.
Temporal cues in videos provide important information for recognizing actions accurately. However, temporal-discriminative features can hardly be extracted without using an annotated large-scale video action dataset for training. This paper proposes a novel Video-based Temporal-Discriminative Learning (VTDL) framework in self-supervised manner. Without labelled data for network pretraining, temporal triplet is generated for each anchor video by using segment of the same or different time interval so as to enhance the capacity for temporal feature representation. Measuring temporal information by time derivative, Temporal Consistent Augmentation (TCA) is designed to ensure that the time derivative (in any order) of the augmented positive is invariant except for a scaling constant. Finally, temporal-discriminative features are learnt by minimizing the distance between each anchor and its augmented positive, while the distance between each anchor and its augmented negative as well as other videos saved in the memory bank is maximized to enrich the representation diversity. In the downstream action recognition task, the proposed method significantly outperforms existing related works. Surprisingly, the proposed self-supervised approach is better than fully-supervised methods on UCF101 and HMDB51 when a small-scale video dataset (with only thousands of videos) is used for pre-training. The code has been made publicly available on https://github.com/FingerRec/Self-Supervised-Temporal-Discriminative-Representation-Learning-for-Video-Action-Recognition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا