ترغب بنشر مسار تعليمي؟ اضغط هنا

Positive normalized solutions to nonlinear elliptic systems in $R^4$ with critical Sobolev exponent

129   0   0.0 ( 0 )
 نشر من قبل Xiaolong Yang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the existence and asymptotic behavior on mass of the positive solutions to the following system: begin{equation}label{eqA0.1} onumber begin{cases} -Delta u+lambda_1u=mu_1u^3+alpha_1|u|^{p-2}u+beta v^2uquad&hbox{in}~R^4, -Delta v+lambda_2v=mu_2v^3+alpha_2|v|^{p-2}v+beta u^2vquad&hbox{in}~R^4, end{cases} end{equation} under the mass constraint $$int_{R^4}u^2=a_1^2quadtext{and}quadint_{R^4}v^2=a_2^2,$$ where $a_1,a_2$ are prescribed, $mu_1,mu_2,beta>0$; $alpha_1,alpha_2in R$, $p!in! (2,4)$ and $lambda_1,lambda_2!in!R$ appear as Lagrange multipliers. Firstly, we establish a non-existence result for the repulsive interaction case, i.e., $alpha_i<0(i=1,2)$. Then turning to the case of $alpha_i>0 (i=1,2)$, if $2<p<3$, we show that the problem admits a ground state and an excited state, which are characterized respectively by a local minimizer and a mountain-pass critical point of the corresponding energy functional. Moreover, we give a precise asymptotic behavior of these two solutions as $(a_1,a_2)to (0,0)$ and $a_1sim a_2$. This seems to be the first contribution regarding the multiplicity as well as the synchronized mass collapse behavior of the normalized solutions to Schr{o}dinger systems with Sobolev critical exponent. When $3leq p<4$, we prove an existence as well as non-existence ($p=3$) results of the ground states, which are characterized by constrained mountain-pass critical points of the corresponding energy functional. Furthermore, precise asymptotic behaviors of the ground states are obtained when the masses of whose two components vanish and cluster to a upper bound (or infinity), respectively.



قيم البحث

اقرأ أيضاً

157 - Gongbao Li , Xiao Luo , Tao Yang 2021
In this paper, we consider the existence and asymptotic properties of solutions to the following Kirchhoff equation begin{equation}label{1} onumber - Bigl(a+bint_{{R^3}} {{{left| { abla u} right|}^2}}Bigl) Delta u =lambda u+ {| u |^{p - 2}}u+mu {| u |^{q - 2}}u text { in } mathbb{R}^{3} end{equation} under the normalized constraint $int_{{mathbb{R}^3}} {{u}^2}=c^2$, where $a!>!0$, $b!>!0$, $c!>!0$, $2!<!q!<!frac{14}{3}!<! p!leq!6$ or $frac{14}{3}!<!q!<! p!leq! 6$, $mu!>!0$ and $lambda!in!R$ appears as a Lagrange multiplier. In both cases for the range of $p$ and $q$, the Sobolev critical exponent $p!=!6$ is involved and the corresponding energy functional is unbounded from below on $S_c=Big{ u in H^{1}({mathbb{R}^3}): int_{{mathbb{R}^3}} {{u}^2}=c^2 Big}$. If $2!<!q!<!frac{10}{3}$ and $frac{14}{3}!<! p!<!6$, we obtain a multiplicity result to the equation. If $2!<!q!<!frac{10}{3}!<! p!=!6$ or $frac{14}{3}!<!q!<! p!leq! 6$, we get a ground state solution to the equation. Furthermore, we derive several asymptotic results on the obtained normalized solutions. Our results extend the results of N. Soave (J. Differential Equations 2020 $&$ J. Funct. Anal. 2020), which studied the nonlinear Schr{o}dinger equations with combined nonlinearities, to the Kirchhoff equations. To deal with the special difficulties created by the nonlocal term $({int_{{R^3}} {left| { abla u} right|} ^2}) Delta u$ appearing in Kirchhoff type equations, we develop a perturbed Pohozaev constraint approach and we find a way to get a clear picture of the profile of the fiber map via careful analysis. In the meantime, we need some subtle energy estimates under the $L^2$-constraint to recover compactness in the Sobolev critical case.
200 - Juncheng Wei , Yuanze Wu 2021
In this paper, we consider the following nonlinear Schr{o}dinger equations with mixed nonlinearities: begin{eqnarray*} left{aligned &-Delta u=lambda u+mu |u|^{q-2}u+|u|^{2^*-2}uquadtext{in }mathbb{R}^N, &uin H^1(bbr^N),quadint_{bbr^N}u^2=a^2, endalig nedright. end{eqnarray*} where $Ngeq3$, $mu>0$, $lambdainmathbb{R}$ and $2<q<2^*$. We prove in this paper begin{enumerate} item[$(1)$]quad Existence of solutions of mountain-pass type for $N=3$ and $2<q<2+frac{4}{N} $. item[$(2)$]quad Existence and nonexistence of ground states for $2+frac{4}{N}leq q<2^*$ with $mu>0$ large. item[$(3)$]quad Precisely asymptotic behaviors of ground states and mountain-pass solutions as $muto0$ and $mu$ goes to its upper bound. end{enumerate} Our studies answer some questions proposed by Soave in cite[Remarks~1.1, 1.2 and 8.1]{S20}.
103 - Zhaoyang Yun , Zhitao Zhang 2021
In this paper, we study important Schr{o}dinger systems with linear and nonlinear couplings begin{equation}label{eq:diricichlet} begin{cases} -Delta u_1-lambda_1 u_1=mu_1 |u_1|^{p_1-2}u_1+r_1beta |u_1|^{r_1-2}u_1|u_2|^{r_2}+kappa (x)u_2~hbox{in}~math bb{R}^N, -Delta u_2-lambda_2 u_2=mu_2 |u_2|^{p_2-2}u_2+r_2beta |u_1|^{r_1}|u_2|^{r_2-2}u_2+kappa (x)u_1~ hbox{in}~mathbb{R}^N, u_1in H^1(mathbb{R}^N), u_2in H^1(mathbb{R}^N), onumber end{cases} end{equation} with the condition $$int_{mathbb{R}^N} u_1^2=a_1^2, int_{mathbb{R}^N} u_2^2=a_2^2,$$ where $Ngeq 2$, $mu_1,mu_2,a_1,a_2>0$, $betainmathbb{R}$, $2<p_1,p_2<2^*$, $2<r_1+r_2<2^*$, $kappa(x)in L^{infty}(mathbb{R}^N)$ with fixed sign and $lambda_1,lambda_2$ are Lagrangian multipliers. We use Ekland variational principle to prove this system has a normalized radially symmetric solution for $L^2-$subcritical case when $Ngeq 2$, and use minimax method to prove this system has a normalized radially symmetric positive solution for $L^2-$supercritical case when $N=3$, $p_1=p_2=4, r_1=r_2=2$.
This paper deals with the existence of positive solutions for the nonlinear system q(t)phi(p(t)u_{i}(t)))+f^{i}(t,textbf{u})=0,quad 0<t<1,quad i=1,2,...,n. This system often arises in the study of positive radial solutions of nonlinear elliptic syste m. Here $textbf{u}=(u_{1},...,u_{n})$ and $f^{i}, i=1,2,...,n$ are continuous and nonnegative functions, $p(t), q(t)hbox{rm :} [0,1]to (0,oo)$ are continuous functions. Moreover, we characterize the eigenvalue intervals for (q(t)phi(p(t)u_{i}(t)))+lambda h_{i}(t)g^{i} (textbf{u})=0, quad 0<t<1,quad i=1,2,...,n. The proof is based on a well-known fixed point theorem in cones.
We study the coupled Hartree system $$ left{begin{array}{ll} -Delta u+ V_1(x)u =alpha_1big(|x|^{-4}ast u^{2}big)u+beta big(|x|^{-4}ast v^{2}big)u &mbox{in} mathbb{R}^N,[1mm] -Delta v+ V_2(x)v =alpha_2big(|x|^{-4}ast v^{2}big)v +betabig(|x|^{-4}ast u^ {2}big)v &mbox{in} mathbb{R}^N, end{array}right. $$ where $Ngeq 5$, $beta>max{alpha_1,alpha_2}geqmin{alpha_1,alpha_2}>0$, and $V_1,,V_2in L^{N/2}(mathbb{R}^N)cap L_{text{loc}}^{infty}(mathbb{R}^N)$ are nonnegative potentials. This system is critical in the sense of the Hardy-Littlewood-Sobolev inequality. For the system with $V_1=V_2=0$ we employ moving sphere arguments in integral form to classify positive solutions and to prove the uniqueness of positive solutions up to translation and dilation, which is of independent interest. Then using the uniqueness property, we establish a nonlocal version of the global compactness lemma and prove the existence of a high energy positive solution for the system assuming that $|V_1|_{L^{N/2}(mathbb{R}^N)}+|V_2|_{L^{N/2}(mathbb{R}^N)}>0$ is suitably small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا