ﻻ يوجد ملخص باللغة العربية
Despite recent success in machine reading comprehension (MRC), learning high-quality MRC models still requires large-scale labeled training data, even using strong pre-trained language models (PLMs). The pre-training tasks for PLMs are not question-answering or MRC-based tasks, making existing PLMs unable to be directly used for unsupervised MRC. Specifically, MRC aims to spot an accurate answer span from the given document, but PLMs focus on token filling in sentences. In this paper, we propose a new framework for unsupervised MRC. Firstly, we propose to learn to spot answer spans in documents via self-supervised learning, by designing a self-supervision pretext task for MRC - Spotting-MLM. Solving this task requires capturing deep interactions between sentences in documents. Secondly, we apply a simple sentence rewriting strategy in the inference stage to alleviate the expression mismatch between questions and documents. Experiments show that our method achieves a new state-of-the-art performance for unsupervised MRC.
Pre-trained Language Models (PLMs) have achieved great success on Machine Reading Comprehension (MRC) over the past few years. Although the general language representation learned from large-scale corpora does benefit MRC, the poor support in evidenc
This study tackles unsupervised domain adaptation of reading comprehension (UDARC). Reading comprehension (RC) is a task to learn the capability for question answering with textual sources. State-of-the-art models on RC still do not have general ling
In this work, we analyze how human gaze during reading comprehension is conditioned on the given reading comprehension question, and whether this signal can be beneficial for machine reading comprehension. To this end, we collect a new eye-tracking d
The fact that there exists a gap between low-level features and semantic meanings of images, called the semantic gap, is known for decades. Resolution of the semantic gap is a long standing problem. The semantic gap problem is reviewed and a survey o
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language