ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the singular perturbation problem for mean field game systems with control on the acceleration. This correspond to a model in which the acceleration cost vanishes. So, we are interested in analyzing the behavior of solutions to the mean field game systems arising from such a problem as the acceleration cost goes to zero. In this case the Hamiltonian fails to be strictly convex and superlinear w.r.t. the momentum variable and this creates new issues in the analysis of the problem. We obtain that the limit problem is the classical mean field game system.
This paper establishes unique solvability of a class of Graphon Mean Field Game equations. The special case of a constant graphon yields the result for the Mean Field Game equations.
We consider a mean field game (MFG) of optimal portfolio liquidation under asymmetric information. We prove that the solution to the MFG can be characterized in terms of a FBSDE with possibly singular terminal condition on the backward component or,
A decentralized blockchain is a distributed ledger that is often used as a platform for exchanging goods and services. This ledger is maintained by a network of nodes that obeys a set of rules, called a consensus protocol, which helps to resolve inco
In this paper we model the role of a government of a large population as a mean field optimal control problem. Such control problems are constrainted by a PDE of continuity-type, governing the dynamics of the probability distribution of the agent pop
Controlling large particle systems in collective dynamics by a few agents is a subject of high practical importance, e.g., in evacuation dynamics. In this paper we study an instantaneous control approach to steer an interacting particle system into a