ترغب بنشر مسار تعليمي؟ اضغط هنا

Singular perturbation problem of mean field game of acceleration

82   0   0.0 ( 0 )
 نشر من قبل Cristian Mendico
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Cristian Mendico




اسأل ChatGPT حول البحث

This paper is devoted to the singular perturbation problem for mean field game systems with control on the acceleration. This correspond to a model in which the acceleration cost vanishes. So, we are interested in analyzing the behavior of solutions to the mean field game systems arising from such a problem as the acceleration cost goes to zero. In this case the Hamiltonian fails to be strictly convex and superlinear w.r.t. the momentum variable and this creates new issues in the analysis of the problem. We obtain that the limit problem is the classical mean field game system.



قيم البحث

اقرأ أيضاً

This paper establishes unique solvability of a class of Graphon Mean Field Game equations. The special case of a constant graphon yields the result for the Mean Field Game equations.
We consider a mean field game (MFG) of optimal portfolio liquidation under asymmetric information. We prove that the solution to the MFG can be characterized in terms of a FBSDE with possibly singular terminal condition on the backward component or, equivalently, in terms of a FBSDE with finite terminal value, yet singular driver. Extending the method of continuation to linear-quadratic FBSDE with singular driver we prove that the MFG has a unique solution. Our existence and uniqueness result allows to prove that the MFG with possibly singular terminal condition can be approximated by a sequence of MFGs with finite terminal values.
A decentralized blockchain is a distributed ledger that is often used as a platform for exchanging goods and services. This ledger is maintained by a network of nodes that obeys a set of rules, called a consensus protocol, which helps to resolve inco nsistencies among local copies of a blockchain. In this paper, we build a mathematical framework for the consensus protocol designer that specifies (a) the measurement of a resource which nodes strategically invest in and compete for in order to win the right to build new blocks in the blockchain; and (b) a payoff function for their efforts. Thus the equilibrium of an associated stochastic differential game can be implemented by selecting nodes in proportion to this specified resource and penalizing dishonest nodes by its loss. This associated, induced game can be further analyzed by using mean field games. The problem can be broken down into two coupled PDEs, where an individual nodes optimal control path is solved using a Hamilton-Jacobi-Bellman equation, where the evolution of states distribution is characterized by a Fokker-Planck equation. We develop numerical methods to compute the mean field equilibrium for both steady states at the infinite time horizon and evolutionary dynamics. As an example, we show how the mean field equilibrium can be applied to the Bitcoin blockchain mechanism design. We demonstrate that a blockchain can be viewed as a mechanism that operates in a decentralized setup and propagates properties of the mean field equilibrium over time, such as the underlying security of the blockchain.
In this paper we model the role of a government of a large population as a mean field optimal control problem. Such control problems are constrainted by a PDE of continuity-type, governing the dynamics of the probability distribution of the agent pop ulation. We show the existence of mean field optimal controls both in the stochastic and deterministic setting. We derive rigorously the first order optimality conditions useful for numerical computation of mean field optimal controls. We introduce a novel approximating hierarchy of sub-optimal controls based on a Boltzmann approach, whose computation requires a very moderate numerical complexity with respect to the one of the optimal control. We provide numerical experiments for models in opinion formation comparing the behavior of the control hierarchy.
Controlling large particle systems in collective dynamics by a few agents is a subject of high practical importance, e.g., in evacuation dynamics. In this paper we study an instantaneous control approach to steer an interacting particle system into a certain spatial region by repulsive forces from a few external agents, which might be interpreted as shepherd dogs leading sheep to their home. We introduce an appropriate mathematical model and the corresponding optimization problem. In particular, we are interested in the interaction of numerous particles, which can be approximated by a mean-field equation. Due to the high-dimensional phase space this will require a tailored optimization strategy. The arising control problems are solved using adjoint information to compute the descent directions. Numerical results on the microscopic and the macroscopic level indicate the convergence of optimal controls and optimal states in the mean-field limit,i.e., for an increasing number of particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا