ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-zero-sum optimal stopping game with continuous versus periodic observations

100   0   0.0 ( 0 )
 نشر من قبل Neofytos Rodosthenous
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new non-zero-sum game of optimal stopping with asymmetric information. Given a stochastic process modelling the value of an asset, one player has full access to the information and observes the process completely, while the other player can access it only periodically at independent Poisson arrival times. The first one to stop receives a reward, different for each player, while the other one gets nothing. We study how each player balances the maximisation of gains against the maximisation of the likelihood of stopping before the opponent. In such a setup, driven by a Levy process with positive jumps, we not only prove the existence, but also explicitly construct a Nash equilibrium with values of the game written in terms of the scale function. Numerical illustrations with put-option payoffs are also provided to study the behaviour of the players strategies as well as the quantification of the value of information.



قيم البحث

اقرأ أيضاً

Computational advertising has been studied to design efficient marketing strategies that maximize the number of acquired customers. In an increased competitive market, however, a market leader (a leader) requires the acquisition of new customers as w ell as the retention of her loyal customers because there often exists a competitor (a follower) who tries to attract customers away from the market leader. In this paper, we formalize a new model called the Stackelberg budget allocation game with a bipartite influence model by extending a budget allocation problem over a bipartite graph to a Stackelberg game. To find a strong Stackelberg equilibrium, a standard solution concept of the Stackelberg game, we propose two algorithms: an approximation algorithm with provable guarantees and an efficient heuristic algorithm. In addition, for a special case where customers are disjoint, we propose an exact algorithm based on linear programming. Our experiments using real-world datasets demonstrate that our algorithms outperform a baseline algorithm even when the follower is a powerful competitor.
64 - Hanwu Li 2018
We develop a theory of optimal stopping problems under G-expectation framework. We first define a new kind of random times, called G-stopping times, which is suitable for this problem. For the discrete time case with finite horizon, the value functio n is defined backwardly and we show that it is the smallest G-supermartingale dominating the payoff process and the optimal stopping time exists. Then we extend this result both to the infinite horizon and to the continuous time case. We also establish the relation between the value function and solution of reflected BSDE driven by G-Brownian motion.
In this article we study and classify optimal martingales in the dual formulation of optimal stopping problems. In this respect we distinguish between weakly optimal and surely optimal martingales. It is shown that the family of weakly optimal and su rely optimal martingales may be quite large. On the other hand it is shown that the Doob-martingale, that is, the martingale part of the Snell envelope, is in a certain sense the most robust surely optimal martingale under random perturbations. This new insight leads to a novel randomized dual martingale minimization algorithm that doesnt require nested simulation. As a main feature, in a possibly large family of optimal martingales the algorithm efficiently selects a martingale that is as close as possible to the Doob martingale. As a result, one obtains the dual upper bound for the optimal stopping problem with low variance.
In this paper we consider non zero-sum games where multiple players control the drift of a process, and their payoffs depend on its ergodic behaviour. We establish their connection with systems of Ergodic BSDEs, and prove the existence of a Nash equi librium under the generalised Isaacs conditions. We also study the case of interacting players of different type.
In this paper, we consider the optimal stopping problem on semi-Markov processes (SMPs) with finite horizon, and aim to establish the existence and computation of optimal stopping times. To achieve the goal, we first develop the main results of finit e horizon semi-Markov decision processes (SMDPs) to the case with additional terminal costs, introduce an explicit construction of SMDPs, and prove the equivalence between the optimal stopping problems on SMPs and SMDPs. Then, using the equivalence and the results on SMDPs developed here, we not only show the existence of optimal stopping time of SMPs, but also provide an algorithm for computing optimal stopping time on SMPs. Moreover, we show that the optimal and -optimal stopping time can be characterized by the hitting time of some special sets, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا