ترغب بنشر مسار تعليمي؟ اضغط هنا

Odd-parity stability of black holes in Einstein-Aether gravity

88   0   0.0 ( 0 )
 نشر من قبل Anzhong Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In Einstein-Aether theory, we study the stability of black holes against odd-parity perturbations on a spherically symmetric and static background. For odd-parity modes, there are two dynamical degrees of freedom arising from the tensor gravitational sector and Aether vector field. We derive general conditions under which neither ghosts nor Laplacian instabilities are present for these dynamical fields. We apply these results to concrete black hole solutions known in the literature and show that some of those solutions can be excluded by the violation of stability conditions. The exact Schwarzschild solution present for $c_{13} = c_{14} = 0$, where $c_i$s are the four coupling constants of the theory with $c_{ij}=c_i + c_j$, is prone to Laplacian instabilities along the angular direction throughout the horizon exterior. However, we find that the odd-parity instability of high radial and angular momentum modes is absent for black hole solutions with $c_{13} = c_4 = 0$ and $c_1 geq 0$.



قيم البحث

اقرأ أيضاً

83 - Chao Zhang , Xiang Zhao , Kai Lin 2020
In this paper, we systematically study spherically symmetric static spacetimes in the framework of Einstein-aether theory, and pay particular attention to the existence of black holes (BHs). In the present studies we first clarify several subtle issu es. In particular, we find that, out of the five non-trivial field equations, only three are independent, so the problem is well-posed, as now generically there are only three unknown functions, {$F(r), B(r), A(r)$, where $F$ and $B$ are metric coefficients, and $A$ describes the aether field.} In addition, the two second-order differential equations for $A$ and $F$ are independent of $B$, and once they are found, $B$ is given simply by an algebraic expression of $F,; A$ and their derivatives. To simplify the problem further, we explore the symmetry of field redefinitions, and work first with the redefined metric and aether field, and then obtain the physical ones by the inverse transformations. These clarifications significantly simplify the computational labor, which is important, as the problem is highly involved mathematically. In fact, it is exactly because of these, we find various numerical BH solutions with an accuracy that is at least two orders higher than previous ones. More important, these BH solutions are the only ones that satisfy the self-consistent conditions and meantime are consistent with all the observational constraints obtained so far. The locations of universal horizons are also identified, together with several other observationally interesting quantities, such as the innermost stable circular orbits (ISCO), the ISCO frequency, and the maximum redshift $z_{max}$ of a photon emitted by a source orbiting the ISCO. All of these quantities are found to be quite close to their relativistic limits.
In scalar-vector-tensor theories with $U(1)$ gauge invariance, it was recently shown that there exists a new type of hairy black hole (BH) solutions induced by a cubic-order scalar-vector interaction. In this paper, we derive conditions for the absen ce of ghosts and Laplacian instabilities against odd-parity perturbations on a static and spherically symmetric background for most general $U(1)$ gauge-invariant scalar-vector-tensor theories with second-order equations of motion. We apply those conditions to hairy BH solutions arising from the cubic-order coupling and show that the odd-parity stability in the gravity sector is always ensured outside the event horizon with the speed of gravity equivalent to that of light. We also study the case in which quartic-order interactions are present in addition to the cubic coupling and obtain conditions under which black holes are stable against odd-parity perturbations.
We use a dynamical systems analysis to investigate the future behaviour of Einstein-Aether cosmological models with a scalar field coupling to the expansion of the aether and a non-interacting perfect fluid. The stability of the equilibrium solutions are analysed and the results are compared with the standard inflationary cosmological solutions and previously studied cosmological Einstein-Aether models.
In this brief report, we investigate the existence of 4-dimensional static spherically symmetric black holes (BHs) in the Einstein-complex-scalar-Gauss-Bonnet (EcsGB) gravity with an arbitrary potential $V(phi)$ and a coupling $f(phi)$ between the sc alar field $phi$ and the Gauss-Bonnet (GB) term. We find that static regular BH solutions with complex scalar hairs do not exist. This conclusion does not depend on the coupling between the GB term and the scalar field, nor on the scalar potential $V(phi)$ and the presence of a cosmological constant $Lambda$ (which can be either positive or negative), as longer as the scalar field remains complex and is regular across the horizon.
144 - Maria Okounkova 2019
In order to perform model-dependent tests of general relativity with gravitational wave observations, we must have access to numerical relativity binary black hole waveforms in theories beyond general relativity (GR). In this study, we focus on order -reduced Einstein dilaton Gauss-Bonnet gravity (EDGB), a higher curvature beyond-GR theory with motivations in string theory. The stability of single, rotating black holes in EDGB is unknown, but is a necessary condition for being able to simulate binary black hole systems (especially the early-inspiral and late ringdown stages) in EDGB. We thus investigate the stability of rotating black holes in order-reduced EDGB. We evolve the leading-order EDGB scalar field and EDGB spacetime metric deformation on a rotating black hole background, for a variety of spins. We find that the EDGB metric deformation exhibits linear growth, but that this level of growth exponentially converges to zero with numerical resolution. Thus, we conclude that rotating black holes in EDGB are numerically stable to leading-order, thus satisfying our necessary condition for performing binary black hole simulations in EDGB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا