ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Inspection of the Silicon Micro-strip Sensors for the CBM Experiment employing Artificial Intelligence

150   0   0.0 ( 0 )
 نشر من قبل Evgeny Lavrik
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical inspection of 1191 silicon micro-strip sensors was performed using a custom made optical inspection setup, employing a machine-learning based approach for the defect analysis and subsequent quality assurance. Furthermore, metrological control of the sensors surface was performed. In this manuscript, we present the analysis of various sensor surface defects. Among these are implant breaks, p-stop breaks, aluminium strip opens, aluminium strip shorts, surface scratches, double metallization layer defects, passivation layer defects, bias resistor defects as well as dust particle identification. The defect detection was done using the application of Convolutional Deep Neural Networks (CDNNs). From this, defective strips and defect clusters were identified, as well as a 2D map of the defects using their geometrical positions on the sensor was performed. Based on the total number of defects found on the sensors surface, a method for the estimation of sensors overall quality grade and quality score was proposed.

قيم البحث

اقرأ أيضاً

We describe a setup for optical quality assurance of silicon microstrip sensors. Pattern recognition algorithms were developed to analyze microscopic scans of the sensors for defects. It is shown that the software has a recognition and classification rate of $>$~90% for defects like scratches, shorts, broken metal lines etc. We have demonstrated that advanced image processing based on neural network techniques is able to further improve the recognition and defect classification rate.
The High Luminosity Upgrade of the LHC will require the replacement of the Inner Detector of ATLAS with the Inner Tracker (ITk) in order to cope with higher radiation levels and higher track densities. Prototype silicon strip detector modules are cur rently developed and their performance is studied in both particle test beams and X-ray beams. In previous test beam studies of prototype modules, silicon sensor strips were found to respond in regions varying from the strip pitch of 74.5 {upmu}m. The variations have been linked to local features of the sensor architecture. This paper presents results of detailed sensor measurements in both X-ray and particle beams investigating the impact of sensor features (metal pads and p-stops) on the responding area of a sensor strip.
For the HERA upgrade, the ZEUS experiment has designed and installed a high precision Micro Vertex Detector (MVD) using single sided micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 microns, with five inter mediate strips (20 micron strip pitch). An extensive test program has been carried out at the DESY-II testbeam facility. In this paper we describe the setup developed to test the ZEUS MVD sensors and the results obtained on both irradiated and non-irradiated single sided micro-strip detectors with rectangular and trapezoidal geometries. The performances of the sensors coupled to the readout electronics (HELIX chip, version 2.2) have been studied in detail, achieving a good description by a Monte Carlo simulation. Measurements of the position resolution as a function of the angle of incidence are presented, focusing in particular on the comparison between standard and newly developed reconstruction algorithms.
In June 2008 single-sided silicon strip sensors with 50 $mu$m readout pitch were tested in a highly energetic pion beam at the SPS at CERN. The purpose of the test was to evaluate characteristic detector properties by varying the strip width and the number of intermediate strips. The experimental setup and first results for the spatial resolution are discussed.
In the high luminosity era of the Large Hadron Collider, the HL-LHC, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant inc rease in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا