ترغب بنشر مسار تعليمي؟ اضغط هنا

Electroweak Symmetry Non-Restoration from Dark Matter

110   0   0.0 ( 0 )
 نشر من قبل Qingyun Wang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Restoration of the electroweak symmetry at temperatures around the Higgs mass is linked to tight phenomenological constraints on many baryogenesis scenarios. A potential remedy can be found in mechanisms of electroweak symmetry non-restoration (SNR), in which symmetry breaking is extended to higher temperatures due to new states with couplings to the Standard Model. Here we show that, in the presence of a second Higgs doublet, SNR can be realized with only a handful of new fermions which can be identified as viable dark matter candidates consistent with all current observational constraints. The competing requirements on this class of models allow for SNR at temperatures up to $sim$TeV, and imply the presence of sub-TeV new physics with sizable interactions with the Standard Model. As a result this scenario is highly testable with signals in reach of next-generation collider and dark matter direct detection experiments.

قيم البحث

اقرأ أيضاً

Electroweak symmetry non-restoration up to high temperatures well above the electroweak scale offers new alternatives for baryogenesis. We propose a new approach for electroweak symmetry non-restoration via an inert Higgs sector that couples to the S tandard Model Higgs as well as an extended scalar singlet sector. We implement renormalization group improvements and thermal resummation, necessary to evaluate the effective potential spanning over a broad range of energy scales and temperatures. We present examples of benchmark scenarios that allow for electroweak symmetry non-restoration all the way up to hundreds of TeV temperatures, and also feature suppressed sphaleron washout factors down to the electroweak scale. Our method for transmitting the Standard Model broken electroweak symmetry to an inert Higgs sector has several intriguing implications for (electroweak) baryogenesis, early universe thermal histories, and can be scrutinized through Higgs physics phenomenology and electroweak precision measurements at the HL-LHC.
We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter. We derive the most general, renormalizable scalar potential, assuming the presence of the Standard Model Higgs doublet, $H$, and an electroweak multiplet $Ph i$ of arbitrary SU(2$)_L$ rank and hypercharge, $Y$. We show that, in general, the $Phi$-$H$ Higgs portal interactions depend on three, rather than two independent couplings as has been previously considered in the literature. For the phenomenologically viable case of $Y=0$ multiplets, we focus on the septuplet and quintuplet cases, and consider the interplay of relic density and spin-independent direct detection cross section. We show that both the relic density and direct detection cross sections depend on a single linear combination of Higgs portal couplings, $lambda_{rm eff}$. For $lambda_{rm eff}sim mathcal{O}(1)$, present direct detection exclusion limits imply that the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of the observed DM relic density.
We show that a discrete exchange symmetry can give rise to realistic dark matter candidates in models with warped extra dimensions. We show how to realize our construction in a variety of models with warped extra dimensions and study in detail a real istic model of Gauge-Higgs Unification/composite Higgs in which the observed amount of dark matter is naturally reproduced. In this model, a realistic pattern of electroweak symmetry breaking typically occurs in a region of parameter space in which the fit to the electroweak precision observables improves, the Higgs is heavier than the experimental bound and new light quark resonances are predicted. We also quantify the fine-tuning of such scenarios, and discuss in which sense Gauge-Higgs Unification models result in a natural theory of electroweak symmetry breaking.
76 - I.N. Mishustin 2003
Properties of cold nuclear matter are studied within a generalized Nambu-Jona-Lasinio model formulated on the level of constituent nucleons. The model parameters are chosen to reproduce simultaneously the observed nucleon and pion masses in vacuum as well as saturation properties of nuclear matter. The strongest constraints on these parameters are given by the empirical values of the nucleon effective mass and compression modulus at nuclear saturation density. A preferable value of the cut-off momentum, determining density of active quasinucleon states in the Dirac sea, is estimated to about 400 MeV/c. With the most reasonable choice of model parameters we have found a first order phase transition of the liquid-gas type at subsaturation densities and the gradual restoration of chiral symmetry at about 3 times the saturation density. Fluctuations of the scalar condensate around its mean-field value are estimated and shown to be large in the vicinity of chiral transition.
77 - Ernest Ma 2012
In an unconventional realization of left-right symmetry, the particle corresponding to the left-handed neutrino nu_L (with SU(2)_L interactions) in the right-handed sector, call it n_R (with SU(2)_R interactions), is not its Dirac mass partner, but a different particle which may be a dark-matter candidate. In parallel to leptogenesis in the SU(2)_L sector, asymmetric production of n_R may occur in the SU(2)_R sector. This mechanism is especially suited for n_R mass of order 1 to 10 keV, i.e. warm dark matter, which is a possible new paradigm for explaining the structure of the Universe at all scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا