ﻻ يوجد ملخص باللغة العربية
The structure and evolution of the spiral arms of our Milky Way are basic but long-standing questions in astronomy. In particular, the lifetime of spiral arms is still a puzzle and has not been well constrained from observations. In this work, we aim to inspect these issues using a large catalogue of open clusters. We compiled a catalogue of 3794 open clusters based on Gaia EDR3. A majority of these clusters have accurately determined parallaxes, proper motions, and radial velocities. The age parameters for these open clusters are collected from references or calculated in this work. In order to understand the nearby spiral structure and its evolution, we analysed the distributions, kinematic properties, vertical distributions, and regressed properties of subsamples of open clusters. We find evidence that the nearby spiral arms are compatible with a long-lived spiral pattern and might have remained approximately stable for the past 80 million years. In particular, the Local Arm, where our Sun is currently located, is also suggested to be long-lived in nature and probably a major arm segment of the Milky Way. The evolutionary characteristics of nearby spiral arms show that the dynamic spiral mechanism might be not prevalent for our Galaxy. Instead, density wave theory is more consistent with the observational properties of open clusters.
The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral str
We have collected high-dispersion echelle spectra of red giant members in the twelve open clusters (OCs) and derived stellar parameters and chemical abundances for 26 species by either line equivalent widths or synthetic spectrum analyses. We confirm
Context. The physical processes driving the formation of Galactic spiral arms are still under debate. Studies using open clusters favour the description of the Milky Way spiral arms as long-lived structures following the classical density wave theory
The spiral structure of our Milky Way Galaxy is not yet known. HII regions and giant molecular clouds are the most prominent spiral tracers. We collected the spiral tracer data of our Milky Way from the literature, namely, HII regions and giant molec
The metallicity structure of the Milky Way disk stems from the chemodynamical evolutionary history of the Galaxy. We use the National Radio Astronomy Observatory Karl G. Jansky Very Large Array to observe ~8-10 GHz hydrogen radio recombination line a