ترغب بنشر مسار تعليمي؟ اضغط هنا

LookAtChat: Visualizing Gaze Awareness for Remote Small-Group Conversations

94   0   0.0 ( 0 )
 نشر من قبل Zhenyi He
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Video conferences play a vital role in our daily lives. However, many nonverbal cues are missing, including gaze and spatial information. We introduce LookAtChat, a web-based video conferencing system, which empowers remote users to identify gaze awareness and spatial relationships in small-group conversations. Leveraging real-time eye-tracking technology available with ordinary webcams, LookAtChat tracks each users gaze direction, identifies who is looking at whom, and provides corresponding spatial cues. Informed by formative interviews with 5 participants who regularly use videoconferencing software, we explored the design space of gaze visualization in both 2D and 3D layouts. We further conducted an exploratory user study (N=20) to evaluate LookAtChat in three conditions: baseline layout, 2D directional layout, and 3D perspective layout. Our findings demonstrate how LookAtChat engages participants in small-group conversations, how gaze and spatial information improve conversation quality, and the potential benefits and challenges to incorporating gaze awareness visualization into existing videoconferencing systems.

قيم البحث

اقرأ أيضاً

202 - Raymond Li 2021
The proliferation of text messaging for mobile health is generating a large amount of patient-doctor conversations that can be extremely valuable to health care professionals. We present ConVIScope, a visual text analytic system that tightly integrat es interactive visualization with natural language processing in analyzing patient-doctor conversations. ConVIScope was developed in collaboration with healthcare professionals following a user-centered iterative design. Case studies with six domain experts suggest the potential utility of ConVIScope and reveal lessons for further developments.
The first responder community has traditionally relied on calls from the public, officially-provided geographic information and maps for coordinating actions on the ground. The ubiquity of social media platforms created an opportunity for near real-t ime sensing of the situation (e.g. unfolding weather events or crises) through volunteered geographic information. In this article, we provide an overview of the design process and features of the Social Media Analytics Reporting Toolkit (SMART), a visual analytics platform developed at Purdue University for providing first responders with real-time situational awareness. We attribute its successful adoption by many first responders to its user-centered design, interactive (geo)visualizations and interactive machine learning, giving users control over analysis.
Appearance-based gaze estimation methods that only require an off-the-shelf camera have significantly improved but they are still not yet widely used in the human-computer interaction (HCI) community. This is partly because it remains unclear how the y perform compared to model-based approaches as well as dominant, special-purpose eye tracking equipment. To address this limitation, we evaluate the performance of state-of-the-art appearance-based gaze estimation for interaction scenarios with and without personal calibration, indoors and outdoors, for different sensing distances, as well as for users with and without glasses. We discuss the obtained findings and their implications for the most important gaze-based applications, namely explicit eye input, attentive user interfaces, gaze-based user modelling, and passive eye monitoring. To democratise the use of appearance-based gaze estimation and interaction in HCI, we finally present OpenGaze (www.opengaze.org), the first software toolkit for appearance-based gaze estimation and interaction.
Computer-generated holographic (CGH) displays show great potential and are emerging as the next-generation displays for augmented and virtual reality, and automotive heads-up displays. One of the critical problems harming the wide adoption of such di splays is the presence of speckle noise inherent to holography, that compromises its quality by introducing perceptible artifacts. Although speckle noise suppression has been an active research area, the previous works have not considered the perceptual characteristics of the Human Visual System (HVS), which receives the final displayed imagery. However, it is well studied that the sensitivity of the HVS is not uniform across the visual field, which has led to gaze-contingent rendering schemes for maximizing the perceptual quality in various computer-generated imagery. Inspired by this, we present the first method that reduces the perceived speckle noise by integrating foveal and peripheral vision characteristics of the HVS, along with the retinal point spread function, into the phase hologram computation. Specifically, we introduce the anatomical and statistical retinal receptor distribution into our computational hologram optimization, which places a higher priority on reducing the perceived foveal speckle noise while being adaptable to any individuals optical aberration on the retina. Our method demonstrates superior perceptual quality on our emulated holographic display. Our evaluations with objective measurements and subjective studies demonstrate a significant reduction of the human perceived noise.
This paper describes how home appliances might be enhanced to improve user awareness of energy usage. Households wish to lead comfortable and manageable lives. Balancing this reasonable desire with the environmental and political goal of reducing ele ctricity usage is a challenge that we claim is best met through the design of interfaces that allows users better control of their usage and unobtrusively informs them of the actions of their peers. A set of design principles along these lines is formulated in this paper. We have built a fully functional prototype home appliance with a socially aware interface to signal the aggregate usage of the users peer group according to these principles, and present the prototype in the paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا