ترغب بنشر مسار تعليمي؟ اضغط هنا

Epimorphisms in varieties of residuated structures

55   0   0.0 ( 0 )
 نشر من قبل Tommaso Moraschini
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is proved that epimorphisms are surjective in a range of varieties of residuated structures, including all varieties of Heyting or Brouwerian algebras of finite depth, and all varieties consisting of Goedel algebras, relative Stone algebras, Sugihara monoids or positive Sugihara monoids. This establishes the infinite deductive Beth definability property for a corresponding range of substructural logics. On the other hand, it is shown that epimorphisms need not be surjective in a locally finite variety of Heyting or Brouwerian algebras of width 2. It follows that the infinite Beth property is strictly stronger than the so-called finite Beth property, confirming a conjecture of Blok and Hoogland.



قيم البحث

اقرأ أيضاً

96 - F. Bou , F. Esteva , J. M. Font 2009
Let K be a variety of (commutative, integral) residuated lattices. The substructural logic usually associated with K is an algebraizable logic that has K as its equivalent algebraic semantics, and is a logic that preserves truth, i.e., 1 is the only truth value preserved by the inferences of the logic. In this paper we introduce another logic associated with K, namely the logic that preserves degrees of truth, in the sense that it preserves lower bounds of truth values in inferences. We study this second logic mainly from the point of view of abstract algebraic logic. We determine its algebraic models and we classify it in the Leibniz and the Frege hierarchies: we show that it is always fully selfextensional, that for most varieties K it is non-protoalgebraic, and that it is algebraizable if and only K is a variety of generalized Heyting algebras, in which case it coincides with the logic that preserves truth. We also characterize the new logic in three ways: by a Hilbert style axiomatic system, by a Gentzen style sequent calculus, and by a set of conditions on its closure operator. Concerning the relation between the two logics, we prove that the truth preserving logic is the purely inferential extension of the one that preserves degrees of truth with either the rule of Modus Ponens or the rule of Adjunction for the fusion connective.
Distributive Stonean residuated lattices are closely related to Stone algebras since their bounded lattice reduct is a Stone algebra. In the present work we follow the ideas presented by Chen and Gr{a}tzer and try to apply them for the case of Stonea n residuated lattices. Given a Stonean residuated lattice, we consider the triple formed by its Boolean skeleton, its algebra of dense elements and a connecting map. We define a category whose objects are these triples and suitably defined morphisms, and prove that we have a categorical equivalence between this category and that of Stonean residuated lattices. We compare our results with other works and show some applications of the equivalence.
125 - Pierre Gillibert 2010
We denote by Conc(L) the semilattice of all finitely generated congruences of a lattice L. For varieties (i.e., equational classes) V and W of lattices such that V is contained neither in W nor its dual, and such that every simple member of W contain s a prime interval, we prove that there exists a bounded lattice A in V with at most aleph 2 elements such that Conc(A) is not isomorphic to Conc(B) for any B in W. The bound aleph 2 is optimal. As a corollary of our results, there are continuum many congruence classes of locally finite varieties of (bounded) modular lattices.
In this paper, we investigate connections between structures present in every generic extension of the universe $V$ and computability theory. We introduce the notion of {em generic Muchnik reducibility} that can be used to to compare the complexity o f uncountable structures; we establish basic properties of this reducibility, and study it in the context of {em generic presentability}, the existence of a copy of the structure in every extension by a given forcing. We show that every forcing notion making $omega_2$ countable generically presents some countable structure with no copy in the ground model; and that every structure generically presentble by a forcing notion that does not make $omega_2$ countable has a copy in the ground model. We also show that any countable structure $mathcal{A}$ that is generically presentable by a forcing notion not collapsing $omega_1$ has a countable copy in $V$, as does any structure $mathcal{B}$ generically Muchnik reducible to a structure $mathcal{A}$ of cardinality $aleph_1$. The former positive result yields a new proof of Harringtons result that counterexamples to Vaughts conjecture have models of power $aleph_1$ with Scott rank arbitrarily high below $omega_2$. Finally, we show that a rigid structure with copies in all generic extensions by a given forcing has a copy already in the ground model.
We prove a strong non-structure theorem for a class of metric structures with an unstable pair of formulae. As a consequence, we show that weak categoricity (that is, categoricity up to isomorphisms and not isometries) implies severa
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا