ﻻ يوجد ملخص باللغة العربية
Reactions on the proton-rich nuclides drive the nucleosynthesis in Core-Collapse Supernovae (CCSNe) and in X-ray bursts (XRBs). CCSNe eject the nucleosynthesis products to the interstellar medium and hence are a potential inventory of p-nuclei, whereas in XRBs nucleosynthesis powers the light curves. In both astrophysical sites the Ni-Cu cycle, which features a competition between $^{59}$Cu(p,$alpha$)$^{56}$Ni and $^{59}$Cu(p,$gamma$)$^{60}$Zn, could potentially halt the production of heavier elements. Here, we report the first direct measurement of $^{59}$Cu(p,$alpha$)$^{56}$Ni using a re-accelerated $^{59}$Cu beam and cryogenic solid hydrogen target. Our results show that the reaction proceeds predominantly to the ground state of $^{56}$Ni and the experimental rate has been found to be lower than Hauser-Feshbach-based statistical predictions. New results hint that the $ u p$-process could operate at higher temperatures than previously inferred and therefore remains a viable site for synthesizing the heavier elements.
Angle-integrated cross-section measurements of the $^{56}$Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair $^{57}$Cu-$^{57}$Ni situated adjacent
A sample of Lambdas produced in 2 A*GeV Ni + Cu collisions has been obtained with the EOS Time Projection Chamber at the Bevalac. Low background in the invariant mass distribution allows for the unambiguous demonstration of Lambda directed flow. The
An inelastic $alpha$-scattering experiment on the unstable $N=Z$, doubly-magic $^{56}$Ni nucleus was performed in inverse kinematics at an incident energy of 50 A.MeV at GANIL. High multiplicity for $alpha$-particle emission was observed within the l
We report the mass measurement of $^{56}$Cu, using the LEBIT 9.4T Penning trap mass spectrometer at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of $^{56}$Cu is critical for constraining the reaction rates
The existence of the miscibility gap in the Cu-Ni system has been an issue in both computational and experimental discussions for half a century [Chakrabarti et al., Phase diagrams of binary nickel alloys, ASM, 1991]. Here we propose a new miscibilit