ﻻ يوجد ملخص باللغة العربية
In this paper we study two different ways of coupling a local operator with a nonlocal one in such a way that the resulting equation is related to an energy functional. In the first strategy the coupling is given via source terms in the equation and in the second one a flux condition in the local part appears. For both models we prove existence and uniqueness of a solution that is obtained via direct minimization of the related energy functional. In the second part of this paper we extend these ideas to deal with local/nonlocal elasticity models in which we couple classical local elasticity with nonlocal peridynamics.
In this paper, we analyze a model composed by coupled local and nonlocal diffusion equations acting in different subdomains. We consider the limit case when one of the subdomains is thin in one direction (it is concentrated to a domain of smaller dim
Given $Lgeq 1$, we discuss the problem of determining the highest $alpha=alpha(L)$ such that any solution to a homogeneous elliptic equation in divergence form with ellipticity ratio bounded by $L$ is in $C^alpha_{rm loc}$. This problem can be formul
In this paper we characterise the minimisers of a one-parameter family of nonlocal and anisotropic energies $I_alpha$ defined on probability measures in $R^n$, with $ngeq 3$. The energy $I_alpha$ consists of a purely nonlocal term of convolution type
We introduce matrix coupled (local and nonlocal) dispersionless equations, construct wide classes of explicit multipole solutions, give explicit expressions for the corresponding Darboux and wave matrix valued functions and consider their asymptotics
For a given Lipschitz domain $Omega$, it is a classical result that the trace space of $W^{1,p}(Omega)$ is $W^{1-1/p,p}(partialOmega)$, namely any $W^{1,p}(Omega)$ function has a well-defined $W^{1-1/p,p}(partialOmega)$ trace on its codimension-1 bou