ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of the seismic field at Virgo and improved estimates of Newtonian-noise suppression by recesses

230   0   0.0 ( 0 )
 نشر من قبل Ayatri Singha
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fluctuations of gravitational forces cause so-called Newtonian noise (NN) in gravitational-wave (GW) detectors which is expected to limit their low-frequency sensitivity in upcoming observing runs. Seismic NN is produced by seismic waves passing near a detectors suspended test masses. It is predicted to be the strongest contribution to NN. Modeling this contribution accurately is a major challenge. Arrays of seismometers were deployed at the Virgo site to characterize the seismic field near the four test masses. In this paper, we present results of a spectral analysis of the array data from one of Virgos end buildings to identify dominant modes of the seismic field. Some of the modes can be associated with known seismic sources. Analyzing the modes over a range of frequencies, we provide a dispersion curve of Rayleigh waves. We find that the Rayleigh speed in the NN frequency band 10 Hz - 20 Hz is very low ($lesssim$100,m/s), which has important consequences for Virgos seismic NN. Using the new speed estimate, we find that the recess formed under the suspended test masses by a basement level at the end buildings leads to a 10 fold reduction of seismic NN.



قيم البحث

اقرأ أيضاً

The LIGO and Virgo scientific collaborations have cataloged ten confident detections from binary black holes and one from binary neutron stars in their first two observing runs, which has already brought up an immense desire among the scientists to s tudy the universe and to extend the knowledge of astrophysics from these compact objects. One of the fundamental noise sources limiting the achievable detector bandwidth is given by Newtonian noise arising from terrestrial gravity fluctuations. It is important to model Newtonian noise spectra very accurately as it cannot be monitored directly using current technology. In this article, we show the reduction in the Newtonian noise curve obtained by more accurately modelling the current configuration of the Virgo observatory. In Virgo, there are clean rooms or recess like structures underneath each test mirror forming the main two Fabry-Perot arm cavities of the detector. We compute the displacements originating from an isotropic Rayleigh field including the recess structure. We find an overall strain noise reduction factor of 2 in the frequency band from 12 to about 15 Hz relative to previous models. The reduction factor depends on frequency and also varies between individual test masses.
The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted to isolate the interferometer from the environment, seismic noise remains an important issue for Virgo. Vibrations produced by the detector infrastructure (such as air conditioning units, water chillers/heaters, pumps) are found to affect Virgos sensitivity, with the main coupling mechanisms being through beam jitter and scattered light processes. The Advanced Virgo (AdV) design seeks to reduce ITF couplings to environmental noise by having most vibration-sensitive components suspended and in-vacuum, as well as muffle and relocate loud machines. During the months of June and July 2010, a Guralp-3TD seismometer was stationed at various locations around the Virgo site hosting major infrastructure machines. Seismic data were examined using spectral and coherence analysis with seismic probes close to the detector. The primary aim of this study was to identify noisy machines which seismically affect the ITF environment and thus require mitigation attention. Analyzed machines are located at various distances from the experimental halls, ranging from 10m to 100m. An attempt is made to measure the attenuation of emitted noise at the ITF and correlate it to the distance from the source and to seismic attenuation models in soil.
The cancellation of noise from terrestrial gravity fluctuations, also known as Newtonian noise (NN), in gravitational-wave detectors is a formidable challenge. Gravity fluctuations result from density perturbations associated with environmental field s, e.g., seismic and acoustic fields, which are characterized by complex spatial correlations. Measurements of these fields necessarily provide incomplete information, and the question is how to make optimal use of available information for the design of a noise-cancellation system. In this paper, we present a machine-learning approach to calculate a surrogate model of a Wiener filter. The model is used to calculate optimal configurations of seismometer arrays for a varying number of sensors, which is the missing keystone for the design of NN cancellation systems. The optimization results indicate that efficient noise cancellation can be achieved even for complex seismic fields with relatively few seismometers provided that they are deployed in optimal configurations. In the form presented here, the optimization method can be applied to all current and future gravitational-wave detectors located at the surface and with minor modifications also to future underground detectors.
In this paper, we present an analysis of seismic spectra that were calculated from all broadband channels (BH?) made available through IRIS, NIED F-net and Orfeus servers covering the past five years and beyond. A general characterization of the data is given in terms of spectral histograms and data-availability plots. We show that the spectral information can easily be categorized in time and regions. Spectral histograms indicate that seismic stations exist in Africa, Australia and Antarctica that measure spectra significantly below the global low-noise models above 1 Hz. We investigate world-wide coherence between the seismic spectra and other data sets like proximity to cities, station elevation, earthquake frequency, and wind speeds. Elevation of seismic stations in the US is strongly anti-correlated with seismic noise near 0.2 Hz and again above 1.5 Hz. Urban settlements are shown to produce excess noise above 1 Hz, but correlation curves look very different depending on the region. It is shown that wind speeds can be strongly correlated with seismic noise above 0.1 Hz, whereas earthquakes produce seismic noise that shows most clearly in correlation around 80 mHz.
The third generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5x expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems, and identify two previously uncharacterized contributions to readout noise. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G, and suggest improvements to the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا