ترغب بنشر مسار تعليمي؟ اضغط هنا

Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED

103   0   0.0 ( 0 )
 نشر من قبل Qiping Su
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto n coherent-state (CS) qubits, by employing 2n microwave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2n microwave or optical cavities.



قيم البحث

اقرأ أيضاً

We present an efficient method to generate a Greenberger-Horne-Zeilinger (GHZ) entangled state of three cat-state qubits (cqubits) via circuit QED. The GHZ state is prepared with three microwave cavities coupled to a superconducting transmon qutrit. Because the qutrit remains in the ground state during the operation, decoherence caused by the energy relaxation and dephasing of the qutrit is greatly suppressed. The GHZ state is created deterministically because no measurement is involved. Numerical simulations show that high-fidelity generation of a three-cqubit GHZ state is feasible with present circuit QED technology. This proposal can be easily extended to create a $N$-cqubit GHZ state ($Ngeq 3$), with $N$ microwave or optical cavities coupled to a natural or artificial three-level atom.
We show how entangled qubits can be encoded as entangled coherent states of two-dimensional centre-of-mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical Bell state, and we introduce a proposa l for entanglement transfer from the two vibrational modes to the electronic states of the two ions in order for the Bell state to be detected by resonance fluorescence shelving methods.
163 - T. Kiesel , W. Vogel , B. Hage 2010
We experimentally generate and tomographically characterize a mixed, genuinely non-Gaussian bipartite continuous-variable entangled state. By testing entanglement in 2$times$2-dimensional two-qubit subspaces, entangled qubits are localized within the density matrix, which, firstly, proves the distillability of the state and, secondly, is useful to estimate the efficiency and test the applicability of distillation protocols. In our example, the entangled qubits are arranged in the density matrix in an asymmetric way, i.e. entanglement is found between diverse qubits composed of different photon number states, although the entangled state is symmetric under exchanging the modes.
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic $Lambda$-system and quantum erasure of the Raman-photon path. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for $|psi^{(+)}rangle$ and $|psi^{(-)}rangle$ states of $61.6pm2.3%$ and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
A maximally entangled state is a quantum state which has maximum von Neumann entropy for each bipartition. Through proposing a new method to classify quantum states by using concurrences of pure states of a region, one can apply Bells inequality to s tudy intensity of quantum entanglement of maximally entangled states. We use a class of seven-qubit quantum states to demonstrate the method, where we express all coefficients of the quantum states in terms of concurrences of pure states of a region. When a critical point of an upper bound of Bells inequality occurs in our quantum states, one of the quantum state is a ground state of the toric code model on a disk manifold. Our result also implies that the maximally entangled states does not suggest local maximum quantum entanglement in our quantum states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا