ترغب بنشر مسار تعليمي؟ اضغط هنا

Implications of a rapidly varying FRB in a globular cluster of M81

85   0   0.0 ( 0 )
 نشر من قبل Wenbin Lu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Wenbin Lu




اسأل ChatGPT حول البحث

The recent discovery of a fast radio burst (FRB) in a globular cluster of M81 points to more than one channels for the formation of objects that produce these powerful radio pulses. Association of an FRB to a globular cluster (or other old stellar systems) suggests that strongly magnetized neutron stars, which are the most likely objects responsible for these bursts, are born not only when young massive stars undergo core-collapse, but also by mergers of old white dwarfs. We find that the fractional contribution to the total FRB rate by old stellar populations is at least a few percent, and the precise fraction can be constrained by FRB searches in the directions of nearby galaxies, both star-forming and elliptical ones. Using very general arguments, we show that the activity time of the M81-FRB is between 10^4 and 10^6 years under conservative assumptions, and more likely of order 10^5 years. The energetics of radio outbursts puts a lower limit on the magnetic field strength of 10^{13} G, and the spin period > 0.2 sec, thereby ruling out the source being a milli-second pulsar. The upper limit on the persistent X-ray luminosity (provided by Chandra), together with the high FRB luminosity and frequent repetitions, severely constrains (or rules out) the possibility that the M81-FRB is a scaled-up version of giant pulses from Galactic pulsars. Finally, the 50 ns variability time of the FRB lightcurve suggests that the emission is produced in a compact region inside the neutron star magnetosphere, as it cannot be accounted for when the emission is at distances > 10^{10} cm.



قيم البحث

اقرأ أيضاً

137 - C. J. Law 2017
We present results of the coordinated observing campaign that made the first subarcsecond localization of a Fast Radio Burst, FRB 121102. During this campaign, we made the first simultaneous detection of an FRB burst by multiple telescopes: the VLA a t 3 GHz and the Arecibo Observatory at 1.4 GHz. Of the nine bursts detected by the Very Large Array at 3 GHz, four had simultaneous observing coverage at other observatories. We use multi-observatory constraints and modeling of bursts seen only at 3 GHz to confirm earlier results showing that burst spectra are not well modeled by a power law. We find that burst spectra are characterized by a ~500 MHz envelope and apparent radio energy as high as $10^{40}$ erg. We measure significant changes in the apparent dispersion between bursts that can be attributed to frequency-dependent profiles or some other intrinsic burst structure that adds a systematic error to the estimate of DM by up to 1%. We use FRB 121102 as a prototype of the FRB class to estimate a volumetric birth rate of FRB sources $R_{FRB} approx 5x10^{-5}/N_r$ Mpc$^{-3}$ yr$^{-1}$, where $N_r$ is the number of bursts per source over its lifetime. This rate is broadly consistent with models of FRBs from young pulsars or magnetars born in superluminous supernovae or long gamma-ray bursts, if the typical FRB repeats on the order of thousands of times during its lifetime.
359 - Y.D. Mayya 2013
We analyse the photometric, chemical, star formation history and structural properties of the brightest globular cluster (GC) in M81, referred as GC1 in this work, with the intention of establishing its nature and origin. We find that it is a metal-r ich ([Fe/H]=-0.60+/-0.10), alpha-enhanced ([Alpha/Fe]=0.20+/0.05), core-collapsed (core radius r_c=1.2 pc, tidal radius r_t = 76r_c), old (>13 Gyr) cluster. It has an ultraviolet excess equivalent of ~2500 blue horizontal branch stars. It is detected in X-rays indicative of the presence of low-mass binaries. With a mass of 10 million solar masses, the cluster is comparable in mass to M31-G1 and is four times more massive than Omega Cen. The values of r_c, absolute magnitude and mean surface brightness of GC1 suggest that it could be, like massive GCs in other giant galaxies, the left-over nucleus of a dissolved dwarf galaxy.
We report the non-detection of dispersed bursts between 4 - 8 GHz from 2.5 hours of observations of FRB20200120E at 6 GHz using the Robert C. Byrd Green Bank Telescope. Our fluence limits are several times lower than the average burst fluences report ed at 600 and 1400 MHz. We conclude that these non-detections are either due to high-frequency bursts being weaker and/or scintillation-induced modulated. It is also likely that our observations were non-concurrent with any activity window of FRB20200120E.
349 - Shotaro Yamasaki 2020
The light curve of the fast radio burst (FRB) 181112 is resolved into four successive pulses, and the time interval ($sim0.8$ ms) between the first and third pulses coincides with that between the second and fourth pulses, which can be interpreted as a neutron star (NS) spinning at a period of about $0.8$ ms. Although this period is shorter than the most rapidly rotating pulsar currently known ($1.4$ ms), it is typical for a simulated massive NS formed immediately after the coalescence of binary neutron stars (BNS). Therefore, a BNS merger is a good candidate for the origin of this FRB if the periodicity is real. We discuss the future implications that can be obtained if such a periodicity is detected from FRBs simultaneously with gravitational waves (GW). The remnant spin period $P_{rm rem}$ inferred from the FRB observation is unique information which is not readily obtained by current GW observations at the post-merger phase. If combined with the mass of the merger remnant $M_{rm rem}$ inferred from GW data, it would set a new constraint on the equation of state of nuclear matter. Furthermore, the post-merger quantity $P_{rm rem}/M_{rm rem}$, or the tidal deformability of the merger remnant, is closely related to the binary tidal deformability parameter $Lambda$ of NSs before they merge, and a joint FRB-GW observation will establish a new limit on $Lambda$. Thus, if $Lambda$ is also well measured by GW data, a comparison between these two will provide further insights into the nature of nuclear matter and BNS mergers.
237 - Jun Ma 2012
In this paper, we presented metal abundance properties of 144 M81 globular clusters. These globulars consist of the largest globular cluster sample in M81 till now. Our main results are: the distribution of metallicities are bimodal, with metallicity peaks at [Fe/H]sim-1.51 and -0.58, and the metal-poor globular clusters tend to be less spatially concentrated than the metal-rich ones; the metal-rich globular clusters in M81 do not demonstrate a centrally concentrated spatial distribution as the metal-rich ones in M31 do; like our Galaxy and M31, the globular clusters in M81 have a small radial metallicity gradient. These results are consistent with those obtained based on a small sample of M81 globular clusters. In addition, this paper showed that there is evidence that a strong rotation of the M81 globular cluster system around the minor axis exists, and that rotation is present in the metal-rich globular cluster subsample, while the metal-poor globular cluster subsample shows no evidence for rotation. The most significant difference between the rotation of the metal-rich and metal-poor globular clusters occurs at intermediate projected galactocentric radii. The results of this paper confirm the conclusion of Schroder et al. that M81s metal-rich globular clusters at intermediate projected radii were associated with a thick disk of M81.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا