ﻻ يوجد ملخص باللغة العربية
Phenotype transition takes place in many biological processes such as differentiation, and understanding how a cell reprograms its global gene expression profile is a problem of rate theories. A cell phenotype transition accompanies with switching of expression rates of clusters of genes, analogous to domain flipping in an Ising system. Here through analyzing single cell RNA sequencing data in the framework of transition path theory, we set to study how such a genome-wide expression program switching proceeds in three different cell transition processes. For each process after reconstructing a Markov transition model in the cell state space, we formed an ensemble of shortest paths connecting the initial and final cell states, reconstructed a reaction coordinate describing the transition progression, and inferred the gene regulation network (GRN) along the reaction coordinate. In all three processes we observed common pattern that the frustration of gene regulatory network (GRN), defined as overall confliction between the regulation received by genes and their expression states, first increases then decreases when approaching a new phenotype. The results support a mechanism of concerted silencing of genes that are active in the initial phenotype and activation of genes that are active in the final phenotype.
Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these
The current pandemic of SARS-CoV-2 has caused extensive damage to society. The characterization of SARS-CoV-2 profiles has been addressed by researchers globally with the aim of resolving this disruptive crisis. This investigation process is indispen
Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, w
Gene transcription is a stochastic process mostly occurring in bursts. Regulation of transcription arises from the interaction of transcription factors (TFs) with the promoter of the gene. The TFs, such as activators and repressors can interact with
The complex dynamics of gene expression in living cells can be well-approximated using Boolean networks. The average sensitivity is a natural measure of stability in these systems: values below one indicate typically stable dynamics associated with a