ترغب بنشر مسار تعليمي؟ اضغط هنا

uGMRT detection of cluster radio emission in low-mass Planck~SZ clusters

107   0   0.0 ( 0 )
 نشر من قبل Surajit Paul
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-mass ($M_{rm{500}}<5times10^{14}{rm{M_odot}}$) galaxy clusters have been largely unexplored in radio observations, due to the inadequate sensitivity of existing telescopes. However, the upgraded GMRT (uGMRT) and the Low Frequency ARray (LoFAR), with unprecedented sensitivity at low frequencies, have paved the way to closely study less massive clusters than before. We have started the first large-scale programme to systematically search for diffuse radio emission from low-mass galaxy clusters, chosen from the Planck Sunyaev-Zeldovich cluster catalogue. We report here the detection of diffuse radio emission from four of the 12 objects in our sample, shortlisted from the inspection of the LoFAR Two Meter Sky Survey (LoTSS-I), followed up by uGMRT Band 3 deep observations. The clusters PSZ2~G089 (Abell~1904) and PSZ2~G111 (Abell~1697) are detected with relic-like emission, while PSZ2~G106 is found to have an intermediate radio halo and PSZ2~G080 (Abell~2018) seems to be a halo-relic system. PSZ2~G089 and PSZ2~G080 are among the lowest-mass clusters discovered with a radio relic and a halo-relic system, respectively. A high ($sim30%$) detection rate, with powerful radio emission ($P_{1.4 {rm GHz}}sim10^{23}~{rm{W~Hz^{-1}}}$) found in most of these objects, opens up prospects of studying radio emission in galaxy clusters over a wider mass range, to much lower-mass systems.

قيم البحث

اقرأ أيضاً

We present the detection of a giant radio halo (GRH) in the Sunyaev-Zeldovich (SZ)-selected merging galaxy cluster ACT-CL J0256.5+0006 ($z = 0.363$), observed with the Giant Metrewave Radio Telescope at 325 MHz and 610 MHz. We find this cluster to ho st a faint ($S_{610} = 5.6 pm 1.4$ mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest-mass systems, $M_{rm 500,SZ} = (5.0 pm 1.2) times 10^{14} M_odot$, found to host a GRH. We measure the GRH at lower significance at 325 MHz ($S_{325} = 10.3 pm 5.3$ mJy), obtaining a spectral index measurement of $alpha^{610}_{325} = 1.0^{+0.7}_{-0.9}$. This result is consistent with the mean spectral index of the population of typical radio halos, $alpha = 1.2 pm 0.2$. Adopting the latter value, we determine a 1.4 GHz radio power of $P_{1.4text{GHz}} = (1.0 pm 0.3) times 10^{24}$ W Hz$^{-1}$, placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the ICM morphology, suggest that ACT-CL J0256.5+0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of $v_perp = 1880 pm 280$ km s$^{-1}$. We construct a simple merger model to infer relevant time-scales in the merger. From its location on the $P_{rm 1.4GHz}{-}L_{rm X}$ scaling relation, we infer that we observe ACT-CL J0256.5+0006 approximately 500 Myr before first core crossing.
Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic haze at microwave wavelengths. The haze is a distinct component of diffuse Galactic emi ssion, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining the Planck data with observations from the WMAP we are able to determine the spectrum of this emission to high accuracy, unhindered by the large systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the microwave haze morphology is consistent with that of the Fermi gamma-ray haze or bubbles, indicating that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new mechanism for cosmic-ray acceleration in the centre of our Galaxy is implied.
We present results from LOFAR and GMRT observations of the galaxy cluster MACS$,$J0717.5$+$3745. The cluster is undergoing a violent merger involving at least four sub-clusters, and it is known to host a radio halo. LOFAR observations reveal new sour ces of radio emission in the Intra-Cluster Medium: (i) a radio bridge that connects the cluster to a head-tail radio galaxy located along a filament of galaxies falling into the main cluster, (ii) a 1.9 Mpc radio arc, that is located North West of the main mass component, (iii) radio emission along the X-ray bar, that traces the gas in the X-rays South West of the cluster centre. We use deep GMRT observations at 608 MHz to constrain the spectral indices of these new radio sources, and of the emission that was already studied in the literature at higher frequency. We find that the spectrum of the radio halo and of the relic at LOFAR frequency follows the same power law as observed at higher frequencies. The radio bridge, the radio arc, and the radio bar all have steep spectra, which can be used to constrain the particle acceleration mechanisms. We argue that the radio bridge could be caused by the re-acceleration of electrons by shock waves that are injected along the filament during the cluster mass assembly. Despite the sensitivity reached by our observations, the emission from the radio halo does not trace the emission of the gas revealed by X-ray observations. We argue that this could be due to the difference in the ratio of kinetic over thermal energy of the intra-cluster gas, suggested by X-ray observations.
We characterise the distribution of quasars within dark matter halos using a direct measurement technique for the first time at redshifts as high as $z sim 1$. Using the Planck Sunyaev-Zeldovich (SZ) catalogue for galaxy groups and the Sloan Digital Sky Survey (SDSS) DR12 quasar dataset, we assign host clusters/groups to the quasars and make a measurement of the mean number of quasars within dark matter halos as a function of halo mass. We find that a simple power-law fit of $logleft <Nright> = (2.11 pm 0.01) log (M) -(32.77 pm 0.11)$ can be used to model the quasar fraction in dark matter halos. This suggests that the quasar fraction increases monotonically as a function of halo mass even to redshifts as high as $zsim 1$.
83 - P. Padovani 2014
We present our very recent results on the sub-mJy radio source populations at 1.4 GHz based on the Extended Chandra Deep Field South VLA survey, which reaches ~ 30 {mu}Jy, with details on their number counts, evolution, and luminosity functions. The sub-mJy radio sky turns out to be a complex mix of star-forming galaxies and radio-quiet AGN evolving at a similar, strong rate and declining radio-loud AGN. While the well-known flattening of the radio number counts below 1 mJy is mostly due to star-forming galaxies, these sources and AGN make up an approximately equal fraction of the sub-mJy sky. Our results shed also light on a fifty-year-old issue, namely radio emission from radio-quiet AGN, and suggest that it is closely related to star formation, at least at z ~ 1.5 - 2. The implications of our findings for future, deeper radio surveys, including those with the Square Kilometre Array, are also discussed. One of the main messages, especially to non-radio astronomers, is that radio surveys are reaching such faint limits that, while previously they were mainly useful for radio quasars and radio galaxies, they are now detecting mostly star-forming galaxies and radio-quiet AGN, i.e., the bulk of the extragalactic sources studied in the infrared, optical, and X-ray bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا