ﻻ يوجد ملخص باللغة العربية
We show that a novel, general phase space mapping Hamiltonian for nonadiabatic systems, which is reminiscent of the renowned Meyer-Miller mapping Hamiltonian, involves a commutator variable matrix rather than the conventional zero-point-energy parameter. In the exact mapping formulation on constraint space for phase space approaches for nonadiabatic dynamics, the general mapping Hamiltonian with commutator variables can be employed to generate approximate trajectory-based dynamics. Various benchmark model tests, which range from gas phase to condensed phase systems, suggest that the overall performance of the general mapping Hamiltonian is better than that of the conventional Meyer-Miller Hamiltonian.
We propose a trajectory-based method for simulating nonadiabatic dynamics in molecular systems with two coupled electronic states. Employing a quantum-mechanically exact mapping of the two-level problem to a spin-1/2 coherent state, we construct a cl
The mapping approach addresses the mismatch between the continuous nuclear phase space and discrete electronic states by creating an extended, fully continuous phase space using a set of harmonic oscillators to encode the populations and coherences o
We derive an exact quantum propagator for nonadiabatic dynamics in multi-state systems using the mapping variable representation, where classical-like Cartesian variables are used to represent both continuous nuclear degrees of freedom and discrete e
We present a new partially linearized mapping-based approach for approximating real-time quantum correlation functions in condensed-phase nonadiabatic systems, called spin-PLDM. Within a classical trajectory picture, partially linearized methods trea
In the previous paper [J. R. Mannouch and J. O. Richardson, J.~Chem.~Phys.~xxx, xxxxx (xxxx)] we derived a new partially linearized mapping-based classical-trajectory technique, called spin-PLDM. This method describes the dynamics associated with the