ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward Interlanguage Parallel Scripting for Distributed-Memory Scientific Computing

495   0   0.0 ( 0 )
 نشر من قبل Daniel S. Katz
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Scripting languages such as Python and R have been widely adopted as tools for the productive development of scientific software because of the power and expressiveness of the languages and available libraries. However, deploying scripted applications on large-scale parallel computer systems such as the IBM Blue Gene/Q or Cray XE6 is a challenge because of issues including operating system limitations, interoperability challenges, parallel filesystem overheads due to the small file system accesses common in scripted approaches, and other issues. We present here a new approach to these problems in which the Swift scripting system is used to integrate high-level scripts written in Python, R, and Tcl, with native code developed in C, C++, and Fortran, by linking Swift to the library interfaces to the script interpreters. In this approach, Swift handles data management, movement, and marshaling among distributed-memory processes without direct user manipulation of low-level communication libraries such as MPI. We present a technique to efficiently launch scripted applications on large-scale supercomputers using a hierarchical programming model.



قيم البحث

اقرأ أيضاً

Matrix multiplication is a very important computation kernel both in its own right as a building block of many scientific applications and as a popular representative for other scientific applications. Cannon algorithm which dates back to 1969 was th e first efficient algorithm for parallel matrix multiplication providing theoretically optimal communication cost. However this algorithm requires a square number of processors. In the mid 1990s, the SUMMA algorithm was introduced. SUMMA overcomes the shortcomings of Cannon algorithm as it can be used on a non-square number of processors as well. Since then the number of processors in HPC platforms has increased by two orders of magnitude making the contribution of communication in the overall execution time more significant. Therefore, the state of the art parallel matrix multiplication algorithms should be revisited to reduce the communication cost further. This paper introduces a new parallel matrix multiplication algorithm, Hierarchical SUMMA (HSUMMA), which is a redesign of SUMMA. Our algorithm reduces the communication cost of SUMMA by introducing a two-level virtual hierarchy into the two-dimensional arrangement of processors. Experiments on an IBM BlueGene-P demonstrate the reduction of communication cost up to 2.08 times on 2048 cores and up to 5.89 times on 16384 cores.
Graphs and their traversal is becoming significant as it is applicable to various areas of mathematics, science and technology. Various problems in fields as varied as biochemistry (genomics), electrical engineering (communication networks), computer science (algorithms and computation) can be modeled as Graph problems. Real world scenarios including communities their interconnections and related properties can be studied using graphs. So fast, scalable, low-cost execution of parallel graph algorithms is very important. In this implementation of parallel breadth first search of graphs, we implemented Parallel BFS algorithm with 1-D partitioning of graph as described in [2] and have reduced execution time by optimizing communication for local buffers.
As the High Performance Computing world moves towards the Exa-Scale era, huge amounts of data should be analyzed, manipulated and stored. In the traditional storage/memory hierarchy, each compute node retains its data objects in its local volatile DR AM. Whenever the DRAMs capacity becomes insufficient for storing this data, the computation should either be distributed between several compute nodes, or some portion of these data objects must be stored in a non-volatile block device such as a hard disk drive or an SSD storage device. Optane DataCenter Persistent Memory Module (DCPMM), a new technology introduced by Intel, provides non-volatile memory that can be plugged into standard memory bus slots and therefore be accessed much faster than standard storage devices. In this work, we present and analyze the results of a comprehensive performance assessment of several ways in which DCPMM can 1) replace standard storage devices, and 2) replace or augment DRAM for improving the performance of HPC scientific computations. To achieve this goal, we have configured an HPC system such that DCPMM can service I/O operations of scientific applications, replace standard storage devices and file systems (specifically for diagnostics and checkpoint-restarting), and serve for expanding applications main memory. We focus on keeping the scientific codes with as few changes as possible, while allowing them to access the NVM transparently as if they access persistent storage. Our results show that DCPMM allows scientific applications to fully utilize nodes locality by providing them with sufficiently-large main memory. Moreover, it can be used for providing a high-performance replacement for persistent storage. Thus, the usage of DCPMM has the potential of replacing standard HDD and SSD storage devices in HPC architectures and enabling a more efficient platform for modern supercomputing applications.
Traditional heterogeneous parallel algorithms, designed for heterogeneous clusters of workstations, are based on the assumption that the absolute speed of the processors does not depend on the size of the computational task. This assumption proved in accurate for modern and perspective highly heterogeneous HPC platforms. New class of algorithms based on the functional performance model (FPM), representing the speed of the processor by a function of problem size, has been recently proposed. These algorithms cannot be however employed in self-adaptable applications because of very high cost of construction of the functional performance model. The paper presents a new class of parallel algorithms for highly heterogeneous HPC platforms. Like traditional FPM-based algorithms, these algorithms assume that the speed of the processors is characterized by speed functions rather than speed constants. Unlike the traditional algorithms, they do not assume the speed functions to be given. Instead, they estimate the speed functions of the processors for different problem sizes during their execution. These algorithms do not construct the full speed function for each processor but rather build and use their partial estimates sufficient for optimal distribution of computations with a given accuracy. The low execution cost of distribution of computations between heterogeneous processors in these algorithms make them suitable for employment in self-adaptable applications. Experiments with parallel matrix multiplication applications based on this approach are performed on local and global heterogeneous computational clusters. The results show that the execution time of optimal matrix distribution between processors is significantly less, by orders of magnitude, than the total execution time of the optimized application.
We design and implement an efficient parallel algorithm for finding a perfect matching in a weighted bipartite graph such that weights on the edges of the matching are large. This problem differs from the maximum weight matching problem, for which sc alable approximation algorithms are known. It is primarily motivated by finding good pivots in scalable sparse direct solvers before factorization. Due to the lack of scalable alternatives, distributed solvers use sequential implementations of maximum weight perfect matching algorithms, such as those available in MC64. To overcome this limitation, we propose a fully parallel distributed memory algorithm that first generates a perfect matching and then iteratively improves the weight of the perfect matching by searching for weight-increasing cycles of length four in parallel. For most practical problems the weights of the perfect matchings generated by our algorithm are very close to the optimum. An efficient implementation of the algorithm scales up to 256 nodes (17,408 cores) on a Cray XC40 supercomputer and can solve instances that are too large to be handled by a single node using the sequential algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا