ﻻ يوجد ملخص باللغة العربية
We study bifurcation phenomena in natural families of rational, (transcendental) entire or meromorphic functions of finite type ${f_lambda := varphi_lambda circ f_{lambda_0} circ psi^{-1}_lambda}_{lambdain M}$, where $M$ is a complex connected manifold, $lambda_0in M$, $f_{lambda_0}$ is a meromorphic map and $varphi_lambda$ and $psi_lambda$ are families of quasiconformal homeomorphisms depending holomorphically on $lambda$ and with $psi_lambda(infty)=infty$. There are fundamental differences compared to the rational or entire setting due to the presence of poles and therefore of parameters for which singular values are eventually mapped to infinity (singular parameters). Under mild geometric conditions we show that singular (asymptotic) parameters are the endpoint of a curve of parameters for which an attracting cycle progressively exits de domain, while its multiplier tends to zero. This proves the main conjecture by Fagella and Keen (asymptotic parameters are virtual centers) in a very general setting. Other results in the paper show the connections between cycles exiting the domain, singular parameters, activity of singular orbits and $J$-unstability, converging to a theorem in the spirit of the celebrated result by Ma~{n}e-Sad-Sullivan and Lyubich.
We study the dynamics of meromorphic maps for a compact Kaehler manifold X. More precisely, we give a simple criterion that allows us to produce a measure of maximal entropy. We can apply this result to bound the Lyapunov exponents. Then, we study
We prove that along any marked point the Green function of a meromorphic family of polynomials parameterized by the punctured unit disk explodes exponentially fast near the origin with a continuous error term.
In this paper we will develop a very general approach which shows that critical relations of holomorphic maps on the complex plane unfold transversally in a positively oriented way. We will mainly illustrate this approach to obtain transversality for
In this paper we will give a short and elementary proof that critical relations unfold transversally in the space of rational maps.
We show that an orientable pseudo-Anosov homeomorphism has vanishing Sah-Arnoux-Fathi invariant if and only if the minimal polynomial of its dilatation is not reciprocal. We relate this to works of Margalit-Spallone and Birman, Brinkmann and Kawamuro