ﻻ يوجد ملخص باللغة العربية
Based on current trends in computer architectures, faster compute speeds must come from increased parallelism rather than increased clock speeds, which are currently stagnate. This situation has created the well-known bottleneck for sequential time-integration, where each individual time-value (i.e., time-step) is computed sequentially. One approach to alleviate this and achieve parallelism in time is with multigrid. In this work, we consider multigrid-reduction-in-time (MGRIT), a multilevel method applied to the time dimension that computes multiple time-steps in parallel. Like all multigrid methods, MGRIT relies on the complementary relationship between relaxation on a fine-grid and a correction from the coarse grid to solve the problem. All current MGRIT implementations are based on unweighted-Jacobi relaxation; here we introduce the concept of weighted relaxation to MGRIT. We derive new convergence bounds for weighted relaxation, and use this analysis to guide the selection of relaxation weights. Numerical results then demonstrate that non-unitary relaxation weights consistently yield faster convergence rates and lower iteration counts for MGRIT when compared with unweighted relaxation. In most cases, weighted relaxation yields a 10%-20% saving in iterations. For A-stable integration schemes, results also illustrate that under-relaxation can restore convergence in some cases where unweighted relaxation is not convergent.
We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multilevel strategies. For both approa
In recent contributions, algebraic multigrid methods have been designed and studied from the viewpoint of the spectral complementarity. In this note we focus our efforts on specific applications and, more precisely, on large linear systems arising fr
Topology optimization for large scale problems continues to be a computational challenge. Several works exist in the literature to address this topic, and all make use of iterative solvers to handle the linear system arising from the Finite Element A
The paper focuses on developing and studying efficient block preconditioners based on classical algebraic multigrid for the large-scale sparse linear systems arising from the fully coupled and implicitly cell-centered finite volume discretization of
This work presents the windowed space-time least-squares Petrov-Galerkin method (WST-LSPG) for model reduction of nonlinear parameterized dynamical systems. WST-LSPG is a generalization of the space-time least-squares Petrov-Galerkin method (ST-LSPG)