ﻻ يوجد ملخص باللغة العربية
For robot touch to converge with the human sense of touch, artificial transduction should involve biologically-plausible population codes analogous to those of natural afferents. Using a biomimetic tactile sensor with 3d-printed skin based on the dermal-epidermal boundary, we propose two novel feature sets to mimic slowly-adapting and rapidly-adapting type-I tactile mechanoreceptor function. Their plausibility is tested with three classic experiments from the study of natural touch: impingement on a flat plate to probe adaptation and spatial modulation; stimulation by spatially-complex ridged stimuli to probe single afferent responses; and perception of grating orientation to probe the population response. Our results show a match between artificial and natural afferent responses in their sensitivity to edges and gaps; likewise, the human and robot psychometric functions match for grating orientation. These findings could benefit robot manipulation, prosthetics and the neurophysiology of touch.
Energy levels, wavelengths, lifetimes and hyperfine structure constants for the isotopes of the first and second spectra of radium, Ra I and Ra II have been compiled. Wavelengths and wave numbers are tabulated for 226Ra and for other Ra isotopes. Iso
This work contributes an event-driven visual-tactile perception system, comprising a novel biologically-inspired tactile sensor and multi-modal spike-based learning. Our neuromorphic fingertip tactile sensor, NeuTouch, scales well with the number of
To perform complex tasks, robots must be able to interact with and manipulate their surroundings. One of the key challenges in accomplishing this is robust state estimation during physical interactions, where the state involves not only the robot and
Humans display the remarkable ability to sense the world through tools and other held objects. For example, we are able to pinpoint impact locations on a held rod and tell apart different textures using a rigid probe. In this work, we consider how we
There are a wide range of features that tactile contact provides, each with different aspects of information that can be used for object grasping, manipulation, and perception. In this paper inference of some key tactile features, tip displacement, c