ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision Measurement of the Helium $2^{3!}S_1- 2^{3!}P/3^{3!}P$ Tune-Out Frequency as a Test of QED

68   0   0.0 ( 0 )
 نشر من قبل Kieran Francis Thomas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite quantum electrodynamics (QED) being one of the most stringently tested theories underpinning modern physics, recent precision atomic spectroscopy measurements have uncovered several small discrepancies between experiment and theory. One particularly powerful experimental observable that tests QED independently of traditional energy level measurements is the `tune-out frequency, where the dynamic polarizability vanishes and the atom does not interact with applied laser light. In this work, we measure the `tune-out frequency for the $2^{3!}S_1$ state of helium between transitions to the $2^{3!}P$ and $3^{3!}P$ manifolds and compare it to new theoretical QED calculations. The experimentally determined value of $725,736,700,$$(40_{mathrm{stat}},260_{mathrm{syst}})$ MHz is within ${sim} 2.5sigma$ of theory ($725,736,053(9)$ MHz), and importantly resolves both the QED contributions (${sim} 30 sigma$) and novel retardation (${sim} 2 sigma$) corrections.



قيم البحث

اقرأ أيضاً

148 - B. M. Henson 2017
The workhorse of atomic physics, quantum electrodynamics, is one of the best-tested theories in physics. However recent discrepancies have shed doubt on its accuracy for complex atomic systems. To facilitate the development of the theory further we a im to measure transition dipole matrix elements of metastable helium (He*) (the ideal 3 body test-bed) to the highest accuracy thus far. We have undertaken a measurement of the `tune-out wavelength which occurs when the contributions to the dynamic polarizability from all atomic transitions sum to zero; thus illuminating an atom with this wavelength of light then produces no net energy shift. This provides a strict constraint on the transition dipole matrix elements without the complication and inaccuracy of other methods. Using a novel atom-laser based technique we have made the first measurement of the tune-out wavelength in metastable helium between the $3^{3}P_{1,2,3}$ and $2^{3}P_{1,2,3}$ states at 413.07(2) nm which compares well with the predicted valuecite{Mitroy2013} of 413.02(9) nm. We have additionally developed many of the methods necessary to improve this measurement to the 100 fm level of accuracy where it will form the most accurate determination of transition rate information ever made in He* and provide a stringent test for atomic QED simulations. We believe this measurement to be one of the most sensitive ever made of an optical dipole potential, able to detect changes in potentials of $sim$200 pK and is widely applicable to other species and areas of atom optics.
We present the detection of the highly forbidden $2^{3!}S_1 rightarrow 3^{3!}S_1$ atomic transition in helium, the weakest transition observed in any neutral atom. Our measurements of the transition frequency, upper state lifetime, and transition str ength agree well with published theoretical values, and can lead to tests of both QED contributions and different QED frameworks. To measure such a weak transition, we developed two methods using ultracold metastable ($2^{3!}S_1$) helium atoms: low background direct detection of excited then decayed atoms for sensitive measurement of the transition frequency and lifetime; and a pulsed atom laser heating measurement for determining the transition strength. These methods could possibly be applied to other atoms, providing new tools in the search for ultra-weak transitions and precision metrology.
Ab initio calculations of QED radiative corrections to the $^2P_{1/2}$ - $^2P_{3/2}$ fine-structure transition energy are performed for selected F-like ions. These calculations are nonperturbative in $alpha Z$ and include all first-order and many-ele ctron second-order effects in $alpha$. When compared to approximate QED computations, a notable discrepancy is found especially for F-like uranium for which the predicted self-energy contributions even differ in sign. Moreover, all deviations between theory and experiment for the $^2P_{1/2}$ - $^2P_{3/2}$ fine-structure energies of F-like ions, reported recently by Li et al., Phys. Rev. A 98, 020502(R) (2018), are resolved if their highly accurate, non-QED fine-structure values are combined with the QED corrections ab initially evaluated here.
129 - I. A. Sulai , Qixue Wu , M. Bishof 2008
Two anomalously weak transitions within the $2 ^3{rm S}_1~-~3 ^3{rm P}_J$ manifolds in $^3$He have been identified. Their transition strengths are measured to be 1,000 times weaker than that of the strongest transition in the same group. This dramati c suppression of transition strengths is due to the dominance of the hyperfine interaction over the fine structure interaction. An alternative selection rule based on textit{IS}-coupling (where the nuclear spin is first coupled to the total electron spin) is proposed. This provides qualitative understanding of the transition strengths. It is shown that the small deviations from the textit{IS}-coupling model are fully accounted for by an exact diagonalization of the strongly interacting states.
383 - W.-W. Li , Y.-R. Liu , P.-Z. Huang 2003
If the $J^P$ of $Theta_5^+$ and $Xi_5^{--}$ pentaquarks is really found to be ${1over 2}^+$ by future experiments, they will be accompanied by $J^P={3over 2}^+$ partners in some models. It is reasonable to expect that these $J^P={3over 2}^+$ states w ill also be discovered in the near future with the current intensive experimental and theoretical efforts. We estimate $J^P={3/2}^+$ pentaquark magnetic moments using different models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا