ﻻ يوجد ملخص باللغة العربية
Tensor product operators on finite dimensional Hilbert spaces are studied. The focus is on bilinear tensor product operators. A tensor product operator on a pair of Hilbert spaces is a maximally general bilinear operator into a target Hilbert space. By maximally general is meant every bilinear operator from the same pair of spaces to any Hilbert space factors into the composition of the tensor product operator with a uniquely determined linear mapping on the target space. There are multiple distinct tensor product operators of the same type; there is no the tensor product. Distinctly different tensor product operators can be associated with different parts of a multipartite system without difficulty. Separability of states, and locality of operators and observables is tensor product operator dependent. The same state in the target state space can be inseparable with respect to one tensor product operator but separable with respect to another, and no tensor product operator is distinguished relative to the others; the unitary operator used to construct a Bell state from a pair of |0>s being highly tensor product operator-dependent is a prime example. The relationship between two tensor product operators of the same type is given by composition with a unitary operator. There is an equivalence between change of tensor product operator and change of basis in the target space. Among the gains from change of tensor product operator is the localization of some nonlocal operators as well as separability of inseparable states. Examples are given.
{bf Abstract.} We show that two hierarchies of spin Hamilton operators admit the same spectrum. Both Hamilton operators play a central role for quantum gates in particular for the case spin-$frac12$ and the case spin-1. The spin-$frac12$, spin-1, spi
A Banach space operator $Tin B(X)$ is left polaroid if for each $lambdainhbox{iso}sigma_a(T)$ there is an integer $d(lambda)$ such that asc $(T-lambda)=d(lambda)<infty$ and $(T-lambda)^{d(lambda)+1}X$ is closed; $T$ is finitely left polaroid if asc $
Canonical tensor product subfactors (CTPSs) describe, among other things, the embedding of chiral observables in two-dimensional conformal quantum field theories. A new class of CTPSs is constructed some of which are associated with certain modular i
We devise a numerical scheme for the time evolution of matrix product operators by adapting the time-dependent variational principle for matrix product states [J. Haegeman et al, Phys. Rev. B 94, 165116 (2016)]. A simple augmentation of the initial o
The program of matrix product states on the infinite tensor product ${mathcal A}^{otimes mathbb Z}$, initiated by Fannes, Nachtergaele and Werner in their seminal paper Commun. Math. Phys. Vol. 144, 443-490 (1992), is re-assessed in a context where $