ﻻ يوجد ملخص باللغة العربية
Boolean Networks (BNs) are established models to qualitatively describe biological systems. The analysis of BNs might be infeasible for medium to large BNs due to the state-space explosion problem. We propose a novel reduction technique called emph{Backward Boolean Equivalence} (BBE), which preserves some properties of interest of BNs. In particular, reduced BNs provide a compact representation by grouping variables that, if initialized equally, are always updated equally. The resulting reduced state space is a subset of the original one, restricted to identical initialization of grouped variables. The corresponding trajectories of the original BN can be exactly restored. We show the effectiveness of BBE by performing a large-scale validation on the whole GINsim BN repository. In selected cases, we show how our method enables analyses that would be otherwise intractable. Our method complements, and can be combined with, other reduction methods found in the literature.
Boolean networks are discrete dynamical systems for modeling regulation and signaling in living cells. We investigate a particular class of Boolean functions with inhibiting inputs exerting a veto (forced zero) on the output. We give analytical expre
While on some natural distributions, neural-networks are trained efficiently using gradient-based algorithms, it is known that learning them is computationally hard in the worst-case. To separate hard from easy to learn distributions, we observe the
Observabililty is an important topic of Boolean control networks (BCNs). In this paper, we propose a new type of observability named online observability to present the sufficient and necessary condition of determining the initial states of BCNs, whe
A new analytical framework consisting of two phenomena: single sample and multiple samples, is proposed to deal with the identification problem of Boolean control networks (BCNs) systematically and comprehensively. Under this framework, the existing
We study the stable attractors of a class of continuous dynamical systems that may be idealized as networks of Boolean elements, with the goal of determining which Boolean attractors, if any, are good approximations of the attractors of generic conti