ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Aware Language Models as Temporal Knowledge Bases

215   0   0.0 ( 0 )
 نشر من قبل Bhuwan Dhingra
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many facts come with an expiration date, from the name of the President to the basketball team Lebron James plays for. But language models (LMs) are trained on snapshots of data collected at a specific moment in time, and this can limit their utility, especially in the closed-book setting where the pretraining corpus must contain the facts the model should memorize. We introduce a diagnostic dataset aimed at probing LMs for factual knowledge that changes over time and highlight problems with LMs at either end of the spectrum -- those trained on specific slices of temporal data, as well as those trained on a wide range of temporal data. To mitigate these problems, we propose a simple technique for jointly modeling text with its timestamp. This improves memorization of seen facts from the training time period, as well as calibration on predictions about unseen facts from future time periods. We also show that models trained with temporal context can be efficiently ``refreshed as new data arrives, without the need for retraining from scratch.



قيم البحث

اقرأ أيضاً

Previous literatures show that pre-trained masked language models (MLMs) such as BERT can achieve competitive factual knowledge extraction performance on some datasets, indicating that MLMs can potentially be a reliable knowledge source. In this pape r, we conduct a rigorous study to explore the underlying predicting mechanisms of MLMs over different extraction paradigms. By investigating the behaviors of MLMs, we find that previous decent performance mainly owes to the biased prompts which overfit dataset artifacts. Furthermore, incorporating illustrative cases and external contexts improve knowledge prediction mainly due to entity type guidance and golden answer leakage. Our findings shed light on the underlying predicting mechanisms of MLMs, and strongly question the previous conclusion that current MLMs can potentially serve as reliable factual knowledge bases.
Pre-trained language models (LMs) have become ubiquitous in solving various natural language processing (NLP) tasks. There has been increasing interest in what knowledge these LMs contain and how we can extract that knowledge, treating LMs as knowled ge bases (KBs). While there has been much work on probing LMs in the general domain, there has been little attention to whether these powerful LMs can be used as domain-specific KBs. To this end, we create the BioLAMA benchmark, which is comprised of 49K biomedical factual knowledge triples for probing biomedical LMs. We find that biomedical LMs with recently proposed probing methods can achieve up to 18.51% Acc@5 on retrieving biomedical knowledge. Although this seems promising given the task difficulty, our detailed analyses reveal that most predictions are highly correlated with prompt templates without any subjects, hence producing similar results on each relation and hindering their capabilities to be used as domain-specific KBs. We hope that BioLAMA can serve as a challenging benchmark for biomedical factual probing.
In the last few years, there has been a surge of interest in learning representations of entitiesand relations in knowledge graph (KG). However, the recent availability of temporal knowledgegraphs (TKGs) that contain time information for each fact cr eated the need for reasoning overtime in such TKGs. In this regard, we present a new approach of TKG embedding, TeRo, which defines the temporal evolution of entity embedding as a rotation from the initial time to the currenttime in the complex vector space. Specially, for facts involving time intervals, each relation isrepresented as a pair of dual complex embeddings to handle the beginning and the end of therelation, respectively. We show our proposed model overcomes the limitations of the existing KG embedding models and TKG embedding models and has the ability of learning and inferringvarious relation patterns over time. Experimental results on four different TKGs show that TeRo significantly outperforms existing state-of-the-art models for link prediction. In addition, we analyze the effect of time granularity on link prediction over TKGs, which as far as we know hasnot been investigated in previous literature.
Recent research investigates factual knowledge stored in large pretrained language models (PLMs). Instead of structural knowledge base (KB) queries, masked sentences such as Paris is the capital of [MASK] are used as probes. The good performance on t his analysis task has been interpreted as PLMs becoming potential repositories of factual knowledge. In experiments across ten linguistically diverse languages, we study knowledge contained in static embeddings. We show that, when restricting the output space to a candidate set, simple nearest neighbor matching using static embeddings performs better than PLMs. E.g., static embeddings perform 1.6% points better than BERT while just using 0.3% of energy for training. One important factor in their good comparative performance is that static embeddings are standardly learned for a large vocabulary. In contrast, BERT exploits its more sophisticated, but expensive ability to compose meaningful representations from a much smaller subword vocabulary.
We propose a general class of language models that treat reference as an explicit stochastic latent variable. This architecture allows models to create mentions of entities and their attributes by accessing external databases (required by, e.g., dial ogue generation and recipe generation) and internal state (required by, e.g. language models which are aware of coreference). This facilitates the incorporation of information that can be accessed in predictable locations in databases or discourse context, even when the targets of the reference may be rare words. Experiments on three tasks shows our model variants based on deterministic attention.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا