ترغب بنشر مسار تعليمي؟ اضغط هنا

An SIR-like kinetic model tracking individuals viral load

171   0   0.0 ( 0 )
 نشر من قبل Andrea Tosin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mathematical models are formal and simplified representations of the knowledge related to a phenomenon. In classical epidemic models, a neglected aspect is the heterogeneity of disease transmission and progression linked to the viral load of each infectious individual. Here, we attempt to investigate the interplay between the evolution of individuals viral load and the epidemic dynamics from a theoretical point of view. In the framework of multi-agent systems, we propose a particle stochastic model describing the infection transmission through interactions among agents and the individual physiological course of the disease. Agents have a double microscopic state: a discrete label, that denotes the epidemiological compartment to which they belong and switches in consequence of a Markovian process, and a microscopic trait, representing a normalized measure of their viral load, that changes in consequence of binary interactions or interactions with a background. Specifically, we consider Susceptible--Infected--Removed--like dynamics where infectious individuals may be isolated from the general population and the isolation rate may depend on the viral load sensitivity and frequency of tests. We derive kinetic evolution equations for the distribution functions of the viral load of the individuals in each compartment, whence, via suitable upscaling procedures, we obtain a macroscopic model for the densities and viral load momentum. We perform then a qualitative analysis of the ensuing macroscopic model, and we present numerical tests in the case of both constant and viral load-dependent isolation control. Also, the matching between the aggregate trends obtained from the macroscopic descriptions and the original particle dynamics simulated by a Monte Carlo approach is investigated.



قيم البحث

اقرأ أيضاً

81 - Nadia Loy , Andrea Tosin 2021
In this paper, we propose a Boltzmann-type kinetic model of the spreading of an infectious disease on a network. The latter describes the connections among countries, cities or districts depending on the spatial scale of interest. The disease transmi ssion is represented in terms of the viral load of the individuals and is mediated by social contacts among them, taking into account their displacements across the nodes of the network. We formally derive the hydrodynamic equations for the density and the mean viral load of the individuals on the network and we analyse the large-time trends of these quantities with special emphasis on the cases of blow-up or eradication of the infection. By means of numerical tests, we also investigate the impact of confinement measures, such as quarantine or localised lockdown, on the diffusion of the disease on the network.
We present an analysis of a person-to-person recommendation network, consisting of 4 million people who made 16 million recommendations on half a million products. We observe the propagation of recommendations and the cascade sizes, which we explain by a simple stochastic model. We analyze how user behavior varies within user communities defined by a recommendation network. Product purchases follow a long tail where a significant share of purchases belongs to rarely sold items. We establish how the recommendation network grows over time and how effective it is from the viewpoint of the sender and receiver of the recommendations. While on average recommendations are not very effective at inducing purchases and do not spread very far, we present a model that successfully identifies communities, product and pricing categories for which viral marketing seems to be very effective.
In this work we tackle a kinetic-like model of opinions dynamics in a networked population endued with a quenched plurality and polarization. Additionally, we consider pairwise interactions that are restrictive, which is modeled with a smooth bounded confidence. Our results show the interesting emergence of nonequilibrium hysteresis and heterogeneity-assisted ordering. Such counterintuitive phenomena are robust to different types of network architectures such as random, small-world and scale-free.
The spread of opinions, memes, diseases, and alternative facts in a population depends both on the details of the spreading process and on the structure of the social and communication networks on which they spread. In this paper, we explore how text it{anti-establishment} nodes (e.g., textit{hipsters}) influence the spreading dynamics of two competing products. We consider a model in which spreading follows a deterministic rule for updating node states (which describe which product has been adopted) in which an adjustable fraction $p_{rm Hip}$ of the nodes in a network are hipsters, who choose to adopt the product that they believe is the less popular of the two. The remaining nodes are conformists, who choose which product to adopt by considering which products their immediate neighbors have adopted. We simulate our model on both synthetic and real networks, and we show that the hipsters have a major effect on the final fraction of people who adopt each product: even when only one of the two products exists at the beginning of the simulations, a very small fraction of hipsters in a network can still cause the other product to eventually become the more popular one. To account for this behavior, we construct an approximation for the steady-state adoption fraction on $k$-regular trees in the limit of few hipsters. Additionally, our simulations demonstrate that a time delay $tau$ in the knowledge of the product distribution in a population, as compared to immediate knowledge of product adoption among nearest neighbors, can have a large effect on the final distribution of product adoptions. Our simple model and analysis may help shed light on the road to success for anti-establishment choices in elections, as such success can arise rather generically in our model from a small number of anti-establishment individuals and ordinary processes of social influence on normal individuals.
Social networks are not static but rather constantly evolve in time. One of the elements thought to drive the evolution of social network structure is homophily - the need for individuals to connect with others who are similar to them. In this paper, we study how the spread of a new opinion, idea, or behavior on such a homophily-driven social network is affected by the changing network structure. In particular, using simulations, we study a variant of the Axelrod model on a network with a homophilic rewiring rule imposed. First, we find that the presence of homophilic rewiring within the network, in general, impedes the reaching of consensus in opinion, as the time to reach consensus diverges exponentially with network size $N$. We then investigate whether the introduction of committed individuals who are rigid in their opinion on a particular issue, can speed up the convergence to consensus on that issue. We demonstrate that as committed agents are added, beyond a critical value of the committed fraction, the consensus time growth becomes logarithmic in network size $N$. Furthermore, we show that slight changes in the interaction rule can produce strikingly different results in the scaling behavior of $T_c$. However, the benefit gained by introducing committed agents is qualitatively preserved across all the interaction rules we consider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا