ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of ergodic and non-ergodic fluctuations on a charge diffusing in a stochastic Magnetic Field

102   0   0.0 ( 0 )
 نشر من قبل Gerardo Aquino
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the basic problem of a charged particle in a stochastic magnetic field. We consider dichotomous fluctuations of the magnetic field {where the sojourn time in one of the two states are distributed according to a given waiting time distribution either with Poisson or non-Poisson statistics, including as well the case of distributions with diverging mean time between changes of the field}, corresponding to an ergodicity breaking condition. We provide analytical and numerical results for all cases evaluating the average and the second moment of the position and velocity of the particle. We show that the field fluctuations induce diffusion of the charge with either normal or anomalous properties, depending on the statistics of the fluctuations, with distinct regimes from those observed, e.g., in standard Continuous Time Random Walk models.

قيم البحث

اقرأ أيضاً

We investigate the standard deviation $delta v(tsamp)$ of the variance $v[xbf]$ of time series $xbf$ measured over a finite sampling time $tsamp$ focusing on non-ergodic systems where independent configurations $c$ get trapped in meta-basins of a gen eralized phase space. It is thus relevant in which order averages over the configurations $c$ and over time series $k$ of a configuration $c$ are performed. Three variances of $v[xbf_{ck}]$ must be distinguished: the total variance $dvtot = dvint + dvext$ and its contributions $dvint$, the typical internal variance within the meta-basins, and $dvext$, characterizing the dispersion between the different basins. We discuss simplifications for physical systems where the stochastic variable $x(t)$ is due to a density field averaged over a large system volume $V$. The relations are illustrated for the shear-stress fluctuations in quenched elastic networks and low-temperature glasses formed by polydisperse particles and free-standing polymer films. The different statistics of $svint$ and $svext$ are manifested by their different system-size dependence
An important challenge in the field of many-body quantum dynamics is to identify non-ergodic states of matter beyond many-body localization (MBL). Strongly disordered spin chains with non-Abelian symmetry and chains of non-Abelian anyons are natural candidates, as they are incompatible with standard MBL. In such chains, real space renormalization group methods predict a partially localized, non-ergodic regime known as a quantum critical glass (a critical variant of MBL). This regime features a tree-like hierarchy of integrals of motion and symmetric eigenstates with entanglement entropy that scales as a logarithmically enhanced area law. We argue that such tentative non-ergodic states are perturbatively unstable using an analytic computation of the scaling of off-diagonal matrix elements and accessible level spacing of local perturbations. Our results indicate that strongly disordered chains with non-Abelian symmetry display either spontaneous symmetry breaking or ergodic thermal behavior at long times. We identify the relevant length and time scales for thermalization: even if such chains eventually thermalize, they can exhibit non-ergodic dynamics up to parametrically long time scales with a non-analytic dependence on disorder strength.
Strictly speaking the laws of the conventional Statistical Physics, based on the Equipartition Postulate and Ergodicity Hypothesis, apply only in the presence of a heat bath. Until recently this restriction was not important for real physical systems : a weak coupling with the bath was believed to be sufficient. However, the progress in both quantum gases and solid state coherent quantum devices demonstrates that the coupling to the bath can be reduced dramatically. To describe such systems properly one should revisit the very foundations of the Statistical Mechanics. We examine this general problem for the case of the Josephson junction chain and show that it displays a novel high temperature non-ergodic phase with finite resistance. With further increase of the temperature the system undergoes a transition to the fully localized state characterized by infinite resistance and exponentially long relaxation.
Experiments on particles motion in living cells show that it is often subdiffusive. This subdiffusion may be due to trapping, percolation-like structures, or viscoelatic behavior of the medium. While the models based on trapping (leading to continuou s-time random walks) can easily be distinguished from the rest by testing their non-ergodicity, the latter two cases are harder to distinguish. We propose a statistical test for distinguishing between these two based on the space-filling properties of trajectories, and prove its feasibility and specificity using synthetic data. We moreover present a flow-chart for making a decision on a type of subdiffusion for a broader class of models.
We study a family of McKean-Vlasov (mean-field) type ergodic optimal control problems with linear control, and quadratic dependence on control of the cost function. For this class of problems we establish existence and uniqueness of an optimal contro l. We propose an $N$-particles Markovian optimal control problem approximating the McKean-Vlasov one and we prove the convergence in relative entropy, total variation and Wasserstein distance of the law of the former to the law of the latter when $N$ goes to infinity. Some McKean-Vlasov optimal control problems with singular cost function and the relation of these problems with the mathematical theory of Bose-Einstein condensation is also established.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا