ﻻ يوجد ملخص باللغة العربية
Non-Hermitian skin effect exhibits the collapse of the extended bulk modes into the extensive number of localized boundary states in open boundary conditions. Here we demonstrate the disorder-driven phase transition of the trivial non-Hermitian system to the higher-order non-Hermitian skin effect phase. In contrast to the clean systems, the disorder-induced boundary modes form an arc in the complex energy plane, which is the manifestation of the disorder-driven dynamical phase transition. At the phase transition, the localized corner modes and bulk modes characterized by trivial Hamiltonian coexist within the single-band but are separated in the complex energy plane. This behavior is analogous to the mobility edge phenomena in the disordered Hermitian systems. Using effective medium theory and numerical diagonalizations, we provide a systematic characterization of the disorder-driven phase transitions.
We study the geometric response of three-dimensional non-Hermitian crystalline systems with nontrivial point-gap topology. For systems with fourfold rotation symmetry, we show that in the presence of disclination lines with a total Frank angle which
Non-Hermiticity from non-reciprocal hoppings has been shown recently to demonstrate the non-Hermitian skin effect (NHSE) under open boundary conditions (OBCs). Here we study the interplay of this effect and the Anderson localization in a textit{non-r
In conventional Hermitian systems with the open boundary condition, Blochs theorem is perturbatively broken down, which means although the crystal momentum is not a good quantum number, the eigenstates are the superposition of several extended Bloch
Robust boundary states epitomize how deep physics can give rise to concrete experimental signatures with technological promise. Of late, much attention has focused on two distinct mechanisms for boundary robustness - topological protection, as well a
Based on a general transport theory for non-reciprocal non-Hermitian systems and a topological model that encompasses a wide range of previously studied models, we (i) provide conditions for effects such as reflectionless and transparent transport, l