ﻻ يوجد ملخص باللغة العربية
The use of cumulative incidence functions for characterizing the risk of one type of event in the presence of others has become increasingly popular over the past decade. The problems of modeling, estimation and inference have been treated using parametric, nonparametric and semi-parametric methods. Efforts to develop suitable extensions of machine learning methods, such as regression trees and related ensemble methods, have begun comparatively recently. In this paper, we propose a novel approach to estimating cumulative incidence curves in a competing risks setting using regression trees and associated ensemble estimators. The proposed methods employ augmented estimators of the Brier score risk as the primary basis for building and pruning trees, and lead to methods that are easily implemented using existing R packages. Data from the Radiation Therapy Oncology Group (trial 9410) is used to illustrate these new methods.
Due to their accuracies, methods based on ensembles of regression trees are a popular approach for making predictions. Some common examples include Bayesian additive regression trees, boosting and random forests. This paper focuses on honest random f
Tree-based methods are popular nonparametric tools in studying time-to-event outcomes. In this article, we introduce a novel framework for survival trees and ensembles, where the trees partition the dynamic survivor population and can handle time-dep
Bayesian Additive Regression Trees (BART) are non-parametric models that can capture complex exogenous variable effects. In any regression problem, it is often of interest to learn which variables are most active. Variable activity in BART is usually
We develop a Bayesian sum-of-trees model where each tree is constrained by a regularization prior to be a weak learner, and fitting and inference are accomplished via an iterative Bayesian backfitting MCMC algorithm that generates samples from a post
In many longitudinal studies, the covariate and response are often intermittently observed at irregular, mismatched and subject-specific times. How to deal with such data when covariate and response are observed asynchronously is an often raised prob