ترغب بنشر مسار تعليمي؟ اضغط هنا

Regression Trees and Ensembles for Cumulative Incidence Functions

61   0   0.0 ( 0 )
 نشر من قبل Youngjoo Cho
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of cumulative incidence functions for characterizing the risk of one type of event in the presence of others has become increasingly popular over the past decade. The problems of modeling, estimation and inference have been treated using parametric, nonparametric and semi-parametric methods. Efforts to develop suitable extensions of machine learning methods, such as regression trees and related ensemble methods, have begun comparatively recently. In this paper, we propose a novel approach to estimating cumulative incidence curves in a competing risks setting using regression trees and associated ensemble estimators. The proposed methods employ augmented estimators of the Brier score risk as the primary basis for building and pruning trees, and lead to methods that are easily implemented using existing R packages. Data from the Radiation Therapy Oncology Group (trial 9410) is used to illustrate these new methods.



قيم البحث

اقرأ أيضاً

Due to their accuracies, methods based on ensembles of regression trees are a popular approach for making predictions. Some common examples include Bayesian additive regression trees, boosting and random forests. This paper focuses on honest random f orests, which add honesty to the original form of random forests and are proved to have better statistical properties. The main contribution is a new method that quantifies the uncertainties of the estimates and predictions produced by honest random forests. The proposed method is based on the generalized fiducial methodology, and provides a fiducial density function that measures how likely each single honest tree is the true model. With such a density function, estimates and predictions, as well as their confidence/prediction intervals, can be obtained. The promising empirical properties of the proposed method are demonstrated by numerical comparisons with several state-of-the-art methods, and by applications to a few real data sets. Lastly, the proposed method is theoretically backed up by a strong asymptotic guarantee.
Tree-based methods are popular nonparametric tools in studying time-to-event outcomes. In this article, we introduce a novel framework for survival trees and ensembles, where the trees partition the dynamic survivor population and can handle time-dep endent covariates. Using the idea of randomized tests, we develop generalized time-dependent Receiver Operating Characteristic (ROC) curves for evaluating the performance of survival trees. The tree-building algorithm is guided by decision-theoretic criteria based on ROC, targeting specifically for prediction accuracy. To address the instability issue of a single tree, we propose a novel ensemble procedure based on averaging martingale estimating equations, which is different from existing methods that average the predicted survival or cumulative hazard functions from individual trees. Extensive simulation studies are conducted to examine the performance of the proposed methods. We apply the methods to a study on AIDS for illustration.
Bayesian Additive Regression Trees (BART) are non-parametric models that can capture complex exogenous variable effects. In any regression problem, it is often of interest to learn which variables are most active. Variable activity in BART is usually measured by counting the number of times a tree splits for each variable. Such one-way counts have the advantage of fast computations. Despite their convenience, one-way counts have several issues. They are statistically unjustified, cannot distinguish between main effects and interaction effects, and become inflated when measuring interaction effects. An alternative method well-established in the literature is Sobol indices, a variance-based global sensitivity analysis technique. However, these indices often require Monte Carlo integration, which can be computationally expensive. This paper provides analytic expressions for Sobol indices for BART posterior samples. These expressions are easy to interpret and are computationally feasible. Furthermore, we will show a fascinating connection between first-order (main-effects) Sobol indices and one-way counts. We also introduce a novel ranking method, and use this to demonstrate that the proposed indices preserve the Sobol-based rank order of variable importance. Finally, we compare these methods using analytic test functions and the En-ROADS climate impacts simulator.
We develop a Bayesian sum-of-trees model where each tree is constrained by a regularization prior to be a weak learner, and fitting and inference are accomplished via an iterative Bayesian backfitting MCMC algorithm that generates samples from a post erior. Effectively, BART is a nonparametric Bayesian regression approach which uses dimensionally adaptive random basis elements. Motivated by ensemble methods in general, and boosting algorithms in particular, BART is defined by a statistical model: a prior and a likelihood. This approach enables full posterior inference including point and interval estimates of the unknown regression function as well as the marginal effects of potential predictors. By keeping track of predictor inclusion frequencies, BART can also be used for model-free variable selection. BARTs many features are illustrated with a bake-off against competing methods on 42 different data sets, with a simulation experiment and on a drug discovery classification problem.
93 - Hao Ran , Yang Bai 2021
In many longitudinal studies, the covariate and response are often intermittently observed at irregular, mismatched and subject-specific times. How to deal with such data when covariate and response are observed asynchronously is an often raised prob lem. Bayesian Additive Regression Trees(BART) is a Bayesian non-Parametric approach which has been shown to be competitive with the best modern predictive methods such as random forest and boosted decision trees. The sum of trees structure combined with a Bayesian inferential framework provide a accurate and robust statistic method. BART variant soft Bayesian Additive Regression Trees(SBART) constructed using randomized decision trees was developed and substantial theoretical and practical benefits were shown. In this paper, we propose a weighted SBART model solution for asynchronous longitudinal data. In comparison to other methods, the current methods are valid under with little assumptions on the covariate process. Extensive simulation studies provide numerical support for this solution. And data from an HIV study is used to illustrate our methodology
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا