ﻻ يوجد ملخص باللغة العربية
AMIGO - The Astrodynamical Middle-frequency Interferometric GW (Gravitation-Wave) Observatory is a first-generation mid-frequency GW mission bridging the sensitivity gap between the high-frequency GW detectors and low-frequency space GW detectors. In our previous works, we have obtained appropriate heliocentric orbit formations of nominal arm length 10,000 km with their first-generation time-delay configurations satisfying frequency noise reduction requirement, and we have also worked out thrust-fuel friendly constant-arm heliocentric orbit formations. In this paper, we review and study noise requirements and present the corresponding GW sensitivities. From the design white position noises and acceleration noises, we obtain the GW sensitivities for the first-generation Michelson X TDI configuration of b-AMIGO (baseline AMIGO), AMIGO, and e-AMIGO (enhanced AMIGO). In view of the current technology development, we study and indicate steps to implement the AMIGO mission concept.
The MICROSCOPE mission aimed to test the Weak Equivalence Principle (WEP) to a precision of $10^{-15}$. The WEP states that two bodies fall at the same rate on a gravitational field independently of their mass or composition. In MICROSCOPE, two masse
We consider the case of highly noisy data coming from two different antennas, each data set containing a damped signal with the same frequency and decay factor but different amplitude, phase, starting point and noise. Formally, we treat the first dat
We anticipate noise from the Laser Interferometer Space Antenna (LISA) will exhibit nonstationarities throughout the duration of its mission due to factors such as antenna repointing, cyclostationarities from spacecraft motion, and glitches as highli
We survey the prospective sensitivities of terrestrial and space-borne atom interferometers (AIs) to gravitat- ional waves (GWs) generated by cosmological and astrophysical sources, and to ultralight dark matter. We discuss the backgrounds from gravi
Grating reflectors have been repeatedly discussed to improve the noise performance of metrological applications due to the reduction or absence of any coating material. So far, however, no quantitative estimate on the thermal noise of these reflectiv