ﻻ يوجد ملخص باللغة العربية
In the traditional quantum theory, one-dimensional quantum spin models possess a factorization surface where the ground states are fully separable having vanishing bipartite as well as multipartite entanglement. We report that in the non-Hermitian counterpart of these models, these factorization surfaces either can predict the exceptional points where the unbroken to the broken transition occurs or can guarantee the reality of the spectrum, thereby proposing a procedure to reveal the unbroken phase. We first analytically demonstrate it for the nearest-neighbor rotation-time RT-symmetric XY model with uniform and alternating transverse magnetic fields, referred to as the iATXY model. Exact diagonalization techniques are then employed to establish this fact for the RT-symmetric XYZ model with short- and long-range interactions as well as for the variable-ranged iATXY model. Moreover, we show that although the factorization surface prescribes the unbroken phase of the non-Hermitian model, the bipartite nearest-neighbor entanglement at the exceptional point is nonvanishing.
The chiral anomaly underlies a broad number of phenomena, from enhanced electronic transport in topological metals to anomalous currents in the quark-gluon plasma. The discovery of topological states of matter in non-Hermitian systems -- effective de
Unlike a Chern number in $2$D and $3$D topological system, Zak phase takes a subtle role to characterize the topological phase in $1$D. On the one hand, it is not a gauge invariant, on the other hand, the Zak phase difference between two quantum phas
Non-Hermitian topological phases bear a number of exotic properties, such as the non-Hermitian skin effect and the breakdown of conventional bulk-boundary correspondence. In this paper, we introduce an unsupervised machine learning approach to classi
Nonlinearities in lattices with topologically nontrivial band structures can give rise to topological solitons, whose properties differ from both conventional lattice solitons and linear topological boundary states. We show that a Su-Schrieffer-Heege
Non-Hermitian systems with specific forms of Hamiltonians can exhibit novel phenomena. However, it is difficult to study their quantum thermodynamical properties. In particular, the calculation of work statistics can be challenging in non-Hermitian s