ﻻ يوجد ملخص باللغة العربية
The formalization of action and obligation using logic languages is a topic of increasing relevance in the field of ethics for AI. Having an expressive syntactic and semantic framework to reason about agents decisions in moral situations allows for unequivocal representations of components of behavior that are relevant when assigning blame (or praise) of outcomes to said agents. Two very important components of behavior in this respect are belief and belief-based action. In this work we present a logic of doxastic oughts by extending epistemic deontic stit theory with beliefs. On one hand, the semantics for formulas involving belief operators is based on probability measures. On the other, the semantics for doxastic oughts relies on a notion of optimality, and the underlying choice rule is maximization of expected utility. We introduce an axiom system for the resulting logic, and we address its soundness, completeness, and decidability results. These results are significant in the line of research that intends to use proof systems of epistemic, doxastic, and deontic logics to help in the testing of ethical behavior of AI through theorem-proving and model-checking.
We consider the pressing question of how to model, verify, and ensure that autonomous systems meet certain textit{obligations} (like the obligation to respect traffic laws), and refrain from impermissible behavior (like recklessly changing lanes). Te
In this paper, we explore how, and if, free choice permission (FCP) can be accepted when we consider deontic conflicts between certain types of permissions and obligations. As is well known, FCP can license, under some minimal conditions, the derivat
We propose two alternatives to Xus axiomatization of the Chellas STIT. The first one also provides an alternative axiomatization of the deliberative STIT. The second one starts from the idea that the historic necessity operator can be defined as an a
This paper is concerned with the first-order paraconsistent logic LPQ$^{supset,mathsf{F}}$. A sequent-style natural deduction proof system for this logic is presented and, for this proof system, both a model-theoretic justification and a logical just
In this paper we introduce a computational-level model of theory of mind (ToM) based on dynamic epistemic logic (DEL), and we analyze its computational complexity. The model is a special case of DEL model checking. We provide a parameterized complexi