ﻻ يوجد ملخص باللغة العربية
The investigation of the spectral kinetic model of the Multipole Resonance Probe (MRP) is presented and discussed in this paper. The MRP is a radio-frequency driven probe of the particular spherical design, which is suitable for the supervision and control of low-temperature plasma. The importance of the kinetic effects was introduced in the previous study of the spectral kinetic model of the idealized MRP. Such effects particularly dominate the energy loss in a low-pressure regime. Unfortunately, they are absent in the Drude model. With the help of the spectral kinetic scheme, those energy losses can be predicted, and it enables us to obtain the electron temperature from the FWHM in the simulated resonance curve. Simultaneously, the electron density can be derived from the simulated resonance frequency. Good agreements in the comparison between the simulation and the measurement demonstrate the suitability of the presented model.
Magnetic impurities in diamond influence the relaxation properties and thus limit the sensitivity of magnetic, electric, strain, and temperature sensors based on nitrogen-vacancy color centers. Diamond samples may exhibit significant spatial variatio
The Numerical Advanced Model of Electron Cyclotron Resonance Ion Source (NAM-ECRIS) is applied for studies of the physical processes in the source. Solutions of separately operating electron and ion modules of NAM-ECRIS are matched in iterative way s
We report the nanoscale spin detection and electron paramagnetic resonance (EPR) spectrum of copper (Cu$^{2+}$) ions via double electron-electron resonance with single spins in diamond at room temperature and low magnetic fields. We measure unexpecte
A machine learning approach has been implemented to measure the electron temperature directly from the emission spectra of a tokamak plasma. This approach utilized a neural network (NN) trained on a dataset of 1865 time slices from operation of the D
Electron dynamics in Electron Cyclotron Resonance Ion Source is numerically simulated by using Particle-In-Cell code combined with simulations of the ion dynamics. Mean electron energies are found to be around 70 keV close to values that are derived