ترغب بنشر مسار تعليمي؟ اضغط هنا

On the limiting behaviour of arithmetic toral eigenfunctions

81   0   0.0 ( 0 )
 نشر من قبل Riccardo Walter Maffucci
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a wide class of families $(F_m)_{minmathbb{N}}$ of Gaussian fields on $mathbb{T}^d=mathbb{R}^d/mathbb{Z}^d$ defined by [F_m:xmapsto frac{1}{sqrt{|Lambda_m|}}sum_{lambdainLambda_m}zeta_lambda e^{2pi ilangle lambda,xrangle}] where the $zeta_lambda$s are independent std. normals and $Lambda_m$ is the set of solutions $lambdainmathbb{Z}^d$ to $p(lambda)=m$ for a fixed elliptic polynomial $p$ with integer coefficients. The case $p(x)=x_1^2+dots+x_d^2$ is a random Laplace eigenfunction whose law is sometimes called the $textit{arithmetic random wave}$, studied in the past by many authors. In contrast, we consider three classes of polynomials $p$: a certain family of positive definite quadratic forms in two variables, all positive definite quadratic forms in three variables except multiples of $x_1^2+x_2^2+x_3^2$, and a wide family of polynomials in many variables. For these classes of polynomials, we study the $(d-1)$-dimensional volume $mathcal{V}_m$ of the zero set of $F_m$. We compute the asymptotics, as $mto+infty$ along certain sequences of integers, of the expectation and variance of $mathcal{V}_m$. Moreover, we prove that in the same limit, $frac{mathcal{V}_m-mathbb{E}[mathcal{V}_m]}{sqrt{text{Var}(mathcal{V}_m)}}$ converges to a std. normal. As in previous works, one reduces the problem of these asymptotics to the study of certain arithmetic properties of the sets of solutions to $p(lambda)=m$. We need to study the number of such solutions for fixed $m$, the number of quadruples of solutions $(lambda,mu, u,iota)$ satisfying $lambda+mu+ u+iota=0$, ($4$-correlations), and the rate of convergence of the counting measure of $Lambda_m$ towards a certain limiting measure on the hypersurface ${p(x)=1}$. To this end, we use prior results on this topic but also prove a new estimate on correlations, of independent interest.



قيم البحث

اقرأ أيضاً

Given an ensemble of NxN random matrices, a natural question to ask is whether or not the empirical spectral measures of typical matrices converge to a limiting spectral measure as N --> oo. While this has been proved for many thin patterned ensemble s sitting inside all real symmetric matrices, frequently there is no nice closed form expression for the limiting measure. Further, current theorems provide few pictures of transitions between ensembles. We consider the ensemble of symmetric m-block circulant matrices with entries i.i.d.r.v. These matrices have toroidal diagonals periodic of period m. We view m as a dial we can turn from the thin ensemble of symmetric circulant matrices, whose limiting eigenvalue density is a Gaussian, to all real symmetric matrices, whose limiting eigenvalue density is a semi-circle. The limiting eigenvalue densities f_m show a visually stunning convergence to the semi-circle as m tends to infinity, which we prove. In contrast to most studies of patterned matrix ensembles, our paper gives explicit closed form expressions for the densities. We prove that f_m is the product of a Gaussian and a degree 2m-2 polynomial; the formula equals that of the m x m Gaussian Unitary Ensemble (GUE). The proof is by the moments. The new feature, which allows us to obtain closed form expressions, is converting the central combinatorial problem in the moment calculation into an equivalent counting problem in algebraic topology. We end with a generalization of the m-block circulant pattern, dropping the assumption that the m random variables be distinct. We prove that the limiting spectral distribution exists and is determined by the pattern of the independent elements within an m-period, depending on not only the frequency at which each element appears, but also the way the elements are arranged.
Lattice spin models in statistical physics are used to understand magnetism. Their Hamiltonians are a discrete form of a version of a Dirichlet energy, signifying a relationship to the Harmonic map heat flow equation. The Gibbs distribution, defined with this Hamiltonian, is used in the Metropolis-Hastings (M-H) algorithm to generate dynamics tending towards an equilibrium state. In the limiting situation when the inverse temperature is large, we establish the relationship between the discrete M-H dynamics and the continuous Harmonic map heat flow associated with the Hamiltonian. We show the convergence of the M-H dynamics to the Harmonic map heat flow equation in two steps: First, with fixed lattice size and proper choice of proposal size in one M-H step, the M-H dynamics acts as gradient descent and will be shown to converge to a system of Langevin stochastic differential equations (SDE). Second, with proper scaling of the inverse temperature in the Gibbs distribution and taking the lattice size to infinity, it will be shown that this SDE system converges to the deterministic Harmonic map heat flow equation. Our results are not unexpected, but show remarkable connections between the M-H steps and the SDE Stratonovich formulation, as well as reveal trajectory-wise out of equilibrium dynamics to be related to a canonical PDE system with geometric constraints.
We study asymptotics of the free energy for the directed polymer in random environment. The polymer is allowed to make unbounded jumps and the environment is given by Bernoulli variables. We first establish the existence and continuity of the free en ergy including the negative infinity value of the coupling constant $beta$. Our proof of existence at $beta=-infty$ differs from existing ones in that it avoids the direct use of subadditivity. Secondly, we identify the asymptotics of the free energy at $beta=-infty$ in the limit of the success probability of the Bernoulli variables tending to one. It is described by using the so-called time constant of a certain directed first passage percolation. Our proof relies on a certain continuity property of the time constant, which is of independent interest.
391 - C. Kuelske , A. A. Opoku 2008
We extend the notion of Gibbsianness for mean-field systems to the set-up of general (possibly continuous) local state spaces. We investigate the Gibbs properties of systems arising from an initial mean-field Gibbs measure by application of given loc al transition kernels. This generalizes previous case-studies made for spins taking finitely many values to the first step in direction to a general theory, containing the following parts: (1) A formula for the limiting conditional probability distributions of the transformed system. It holds both in the Gibbs and non-Gibbs regime and invokes a minimization problem for a constrained rate-function. (2) A criterion for Gibbsianness of the transformed system for initial Lipschitz-Hamiltonians involving concentration properties of the transition kernels. (3) A continuity estimate for the single-site conditional distributions of the transformed system. While (2) and (3) have provable lattice-counterparts, the characterization of (1) is stronger in mean-field. As applications we show short-time Gibbsianness of rotator mean-field models on the (q-1)-dimensional sphere under diffusive time-evolution and the preservation of Gibbsianness under local coarse-graining of the initial local spin space.
In this paper, we consider the transmission eigenvalue problem associated with a general conductive transmission condition and study the geometric structures of the transmission eigenfunctions. We prove that under a mild regularity condition in terms of the Herglotz approximations of one of the pair of the transmission eigenfunctions, the eigenfunctions must be vanishing around a corner on the boundary. The Herglotz approximation can be regarded as the Fourier transform of the transmission eigenfunction in terms of the plane waves, and the growth rate of the transformed function can be used to characterize the regularity of the underlying wave function. The geometric structures derived in this paper include the related results in [5,19] as special cases and verify that the vanishing around corners is a generic local geometric property of the transmission eigenfunctions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا