ﻻ يوجد ملخص باللغة العربية
We explore the decays of $Bto V_1V_2$ ($V_{1,2}= (rho, omega,K^*, phi)$ and $B= (B^0, B^+,B_s)$) with transverse polarizations. We explicitly evaluate the eigenstates of T-odd scalar operators involving spins for the first time, which offer physical insight among the T violating observables. Based on the helicity suppression of tree operators for transverse polarizations in the standard model (SM), we deduce that $Delta phi_p = phi_parallel - phi_perp=0$ with $phi_{perp,parallel}$ the complex phases of the transverse amplitudes. In contrast, the experiments show that $Delta phi _p (B^0 to K^{*0} omega)= -0.84pm 0.54$, which would be a signal of new physics. There is also a discrepancy between our result in the SM and the experimental data for the transverse polarized branching ratio in $B^0 to K^{*0} omega$. In addition, by counting the helicity flips, we obtain that $sin(phi_p ) approx 0$ in $Bto V_1T_2$ with $T_2$ an arbitrary spin-$n$ meson ($nge1$).
In recent years, intriguing hints for the violation of Lepton Flavour Universality (LFU) have been accumulated in semileptonic $B$ decays, both in the neutral-current transitions $bto sell^+ell^-$ (i.e., $R_K$ and $R_{K^*}$) and the charged-current t
The recent measurements of $R_K$, $B_stomu^+mu^-$, a set of CP-averaged angular observables for the $B^0to K^{*0}mu^+mu^-$ decay, and its isospin partner $B^+to K^{*+}mu^+mu^-$ by the LHCb Collaboration, consistently hint at lepton universality viola
$B$ decays proceeding via $bto cell u$ transitions with $ell=e$ or $mu$ are tree-level processes in the Standard Model. They are used to measure the CKM element $V_{cb}$, as such forming an important ingredient in the determination of e.g. the unitar
Motivated by deviations with respect to Standard Model predictions in $bto sell^+ell^-$ decays, we evaluate the global significance of the new physics hypothesis in this system, including the look-elsewhere effect for the first time. We estimate the
We present results of global fits of all relevant experimental data on rare $b to s$ decays. We observe significant tensions between the Standard Model predictions and the data. After critically reviewing the possible sources of theoretical uncertain