ترغب بنشر مسار تعليمي؟ اضغط هنا

Systemic Infinitesimal Over-dispersion on General Stochastic Graphical Models

205   0   0.0 ( 0 )
 نشر من قبل Ning Ning
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic models of interacting populations have crucial roles in scientific fields such as epidemiology and ecology, yet the standard approach to extending an ordinary differential equation model to a Markov chain does not have sufficient flexibility in the mean-variance relationship to match data (e.g. cite{bjornstad2001noisy}). A previous theory on time-homogeneous dynamics over a single arrow by cite{breto2011compound} showed how gamma white noise could be used to construct certain over-dispersed Markov chains, leading to widely used models (e.g. cite{breto2009time,he2010plug}). In this paper, we define systemic infinitesimal over-dispersion, developing theory and methodology for general time-inhomogeneous stochastic graphical models. Our approach, based on Dirichlet noise, leads to a new class of Markov models over general direct graphs. It is compatible with modern likelihood-based inference methodologies (e.g. cite{ionides2006inference,ionides2015inference,king2008inapparent}) and therefore we can assess how well the new models fit data. We demonstrate our methodology on a widely analyzed measles dataset, adding Dirichlet noise to a classical SEIR (Susceptible-Exposed-Infected-Recovered) model. We find that the proposed methodology has higher log-likelihood than the gamma white noise approach, and the resulting parameter estimations provide new insights into the over-dispersion of this biological system.



قيم البحث

اقرأ أيضاً

Graphical models are ubiquitous tools to describe the interdependence between variables measured simultaneously such as large-scale gene or protein expression data. Gaussian graphical models (GGMs) are well-established tools for probabilistic explora tion of dependence structures using precision matrices and they are generated under a multivariate normal joint distribution. However, they suffer from several shortcomings since they are based on Gaussian distribution assumptions. In this article, we propose a Bayesian quantile based approach for sparse estimation of graphs. We demonstrate that the resulting graph estimation is robust to outliers and applicable under general distributional assumptions. Furthermore, we develop efficient variational Bayes approximations to scale the methods for large data sets. Our methods are applied to a novel cancer proteomics data dataset wherein multiple proteomic antibodies are simultaneously assessed on tumor samples using reverse-phase protein arrays (RPPA) technology.
In our previous paper, A Unified Approach to Systemic Risk Measures via Acceptance Set (textit{Mathematical Finance, 2018}), we have introduced a general class of systemic risk measures that allow for random allocations to individual banks before agg regation of their risks. In the present paper, we prove the dual representation of a particular subclass of such systemic risk measures and the existence and uniqueness of the optimal allocation related to them. We also introduce an associated utility maximization problem which has the same optimal solution as the systemic risk measure. In addition, the optimizer in the dual formulation provides a textit{risk allocation} which is fair from the point of view of the individual financial institutions. The case with exponential utilities which allows for explicit computation is treated in details.
Graphical models express conditional independence relationships among variables. Although methods for vector-valued data are well established, functional data graphical models remain underdeveloped. We introduce a notion of conditional independence b etween random functions, and construct a framework for Bayesian inference of undirected, decomposable graphs in the multivariate functional data context. This framework is based on extending Markov distributions and hyper Markov laws from random variables to random processes, providing a principled alternative to naive application of multivariate methods to discretized functional data. Markov properties facilitate the composition of likelihoods and priors according to the decomposition of a graph. Our focus is on Gaussian process graphical models using orthogonal basis expansions. We propose a hyper-inverse-Wishart-process prior for the covariance kernels of the infinite coefficient sequences of the basis expansion, establish existence, uniqueness, strong hyper Markov property, and conjugacy. Stochastic search Markov chain Monte Carlo algorithms are developed for posterior inference, assessed through simulations, and applied to a study of brain activity and alcoholism.
Gaussian Graphical models (GGM) are widely used to estimate the network structures in many applications ranging from biology to finance. In practice, data is often corrupted by latent confounders which biases inference of the underlying true graphica l structure. In this paper, we compare and contrast two strategies for inference in graphical models with latent confounders: Gaussian graphical models with latent variables (LVGGM) and PCA-based removal of confounding (PCA+GGM). While these two approaches have similar goals, they are motivated by different assumptions about confounding. In this paper, we explore the connection between these two approaches and propose a new method, which combines the strengths of these two approaches. We prove the consistency and convergence rate for the PCA-based method and use these results to provide guidance about when to use each method. We demonstrate the effectiveness of our methodology using both simulations and in two real-world applications.
Among Judea Pearls many contributions to Causality and Statistics, the graphical d-separation} criterion, the do-calculus and the mediation formula stand out. In this chapter we show that d-separation} provides direct insight into an earlier causal m odel originally described in terms of potential outcomes and event trees. In turn, the resulting synthesis leads to a simplification of the do-calculus that clarifies and separates the underlying concepts, and a simple counterfactual formulation of a complete identification algorithm in causal models with hidden variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا