ﻻ يوجد ملخص باللغة العربية
Crime prevention strategies based on early intervention depend on accurate risk assessment instruments for identifying high risk youth. It is important in this context that the instruments be convenient to administer, which means, in particular, that they must be reasonably brief; adaptive screening tests are useful for this purpose. Although item response theory (IRT) bears a long and rich history in producing reliable adaptive tests, adaptive tests constructed using classification and regression trees are becoming a popular alternative to the traditional IRT approach for item selection. On the upside, unlike IRT, tree-based questionnaires require no real-time parameter estimation during administration. On the downside, while item response theory provides robust criteria for terminating the exam, the stopping criterion for a tree-based adaptive test (the maximum tree depth) is unclear. We present a Bayesian decision theory approach for characterizing the trade-offs of administering tree-based questionnaires of different lengths. This formalism involves specifying 1) a utility function measuring the goodness of the assessment; 2) a target population over which this utility should be maximized; 3) an action space comprised of different-length assessments, populated via a tree-fitting algorithm. Using this framework, we provide uncertainty estimates for the trade-offs of shortening the exam, allowing practitioners to determine an optimal exam length in a principled way. The method is demonstrated through an application to youth delinquency risk assessment in Honduras.
Leveraging preclinical animal data for a phase I first-in-man trial is appealing yet challenging. A prior based on animal data may place large probability mass on values of the dose-toxicity model parameter(s), which appear infeasible in light of dat
We develop a new methodology for spatial regression of aggregated outputs on multi-resolution covariates. Such problems often occur with spatial data, for example in crop yield prediction, where the output is spatially-aggregated over an area and the
Motivated by the analysis of high-dimensional neuroimaging signals located over the cortical surface, we introduce a novel Principal Component Analysis technique that can handle functional data located over a two-dimensional manifold. For this purpos
Arctic sea ice plays an important role in the global climate. Sea ice models governed by physical equations have been used to simulate the state of the ice including characteristics such as ice thickness, concentration, and motion. More recent models
This work is motivated by the Obepine French system for SARS-CoV-2 viral load monitoring in wastewater. The objective of this work is to identify, from time-series of noisy measurements, the underlying auto-regressive signals, in a context where the