ﻻ يوجد ملخص باللغة العربية
he $B(E2,2^+ rightarrow 0^+)$ transition strengths of the T=1 isobaric triplet $^{70}$Kr, $^{70}$Br, $^{70}$Se, recently measured at RIKEN/RIBF, are discussed in terms of state of the art large scale shell model calculations using the JUN45 and JUN45+LNPS plus Coulomb interactions. In this letter we argue that, depending on the effective charges used, the calculations are either in line with the experimental data within statistical uncertainties, or the anomaly happens in $^{70}$Br, rather than $^{70}$Kr. In the latter case, we suggest that it can be due to the presence of a hitherto undetected 1$^+$ T=0 state below the yrast 2$^+$ T=1 state. Our results do not support a shape change of $^{70}$Kr with respect to the other members of the isobaric multiplet.
The $A=4$ nuclei, i.e., $^4$H, $^4$He and $^4$Li, establish an interesting isospin $T=1$ isobaric system. $^4$H and $^4$Li are unbound broad resonances, whereas $^4$He is deeply bound in its ground state but unbound in all its excited states. The pre
The lightest Xenon isotopes are studied in the framework of the Interacting Shell Model (ISM). The valence space comprises all the orbits lying between the magic closures N=Z=50 and N=Z=82. The calculations produce collective deformed structures of t
The role of discrete (or point-group) symmetries is discussed in the framework of the Cluster Shell Model which describes the splitting of single-particle levels in the deformed field of cluster potentials. We discuss the classification of the eigens
The pairing correlation energy for two-nucleon configurations with the spin-parity and isospin of $J^pi=0^+$, $T$=1 and $J^pi=1^+$, $T$=0 are calculated with $T$=1 and $T$=0 pairing interactions, respectively. To this end, we consider the $(1f2p)$ sh
In this contribution, we present the cluster shell model which is analogous to the Nilsson model, but for cluster potentials. Special attention is paid to the consequences of the discrete symmetries of three alpha-particles in an equilateral triangle