ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining off-shell production of axion-like particles with $Zgamma$ and $WW$ differential cross-section measurements

107   0   0.0 ( 0 )
 نشر من قبل Beate Heinemann
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article describes a search for low-mass axion-like particles (ALPs) at the Large Hadron Collider (LHC). If ALPs were produced at the LHC via gluon-gluon fusion and decayed to bosons, the energy dependence of the measured diboson cross-sections would differ from the Standard Model expectation. Measurements of $WW$ and $Zgamma$ differential cross-sections by the ATLAS collaboration are interpreted to constrain ALP couplings to $W$-, $Z$-bosons and photons assuming gluon-gluon-fusion production.


قيم البحث

اقرأ أيضاً

71 - S. Afach , G. Ban , G. Bison 2014
We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and $^{199}$Hg atoms confined in the same volume. The measurement was p erformed in a $sim$1$mu$ T vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence of a short range spin-dependent interaction that could possibly be mediated by axions or axion-like particles. The interaction strength is proportional to the CP violating product of scalar and pseudoscalar coupling constants $g_Sg_P$. Our result confirms limits from complementary experiments with spin-polarized nuclei in a model-independent way. Limits from other neutron experiments are improved by up to two orders of magnitude in the interaction range of $10^{-6}<lambda<10^{-4}$ m.
Study of the elastic scattering can produce a rich information on the dynamics of the strong interaction. The EPECUR collaboration is aimed at the research of baryon resonances in the second resonance region via pion-proton elastic scattering and kao n-lambda production. The experiment features high statistics and better than 1 MeV resolution in the invariant mass thus allowing searches for narrow resonances with the coupling to the pi p channel as low as 5%. The experiment is of formation type, i.e. the resonances are produced in s-channel and the scan over the invariant mass is done by the variation of the incident pion momentum which is measured with the accuracy of 0.1% with a set of 1 mm pitch proportional chambers located in the first focus of the beam line. The reaction is identified by a magnetless spectrometer based on wire drift chambers with a hexagonal structure. Background suppression in this case depends on the angular resolution, so the amount of matter in the chambers and the setup was minimized to reduce multiple scattering. The measurements started in 2009 with the setup optimized for elastic pion-proton scattering. With 3 billions of triggers already recorded the differential cross section of the elastic pi p-scattering on a liquid hydrogen target in the region of the diffraction minimum is measured with statistical accuracy about 1% in 1 MeV steps in terms of the invariant mass. The paper covers the experimental setup, current status and some preliminary results.
72 - H1 , ZEUS collaborations 2018
Measurements of open charm and beauty production cross sections in deep inelastic $ep$ scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections are obtained in the kinematic range of negative four-momentum transfer squared of the photon $2.5$ GeV$^2<Q^2<2000$ GeV$^2$ and Bjorken scaling variable $3cdot10^{-5}<x_{text{Bj}}<5cdot10^{-2}$. The combination method accounts for the correlations of the statistical and systematic uncertainties among the different datasets. Perturbative QCD calculations are compared to the combined data. A next-to-leading order QCD analysis is performed using these data together with the combined inclusive deep inelastic scattering cross sections from HERA. The running charm- and beauty-quark masses are determined as $m_c(m_c) = 1.290^{+0.046}_{-0.041}text{(exp/fit)}^{+0.062}_{-0.014}text{(model)}^{+0.003}_{-0.031}text{(parameterisation)}$ GeV and $m_b(m_b) = 4.049^{+0.104}_{-0.109}text{(exp/fit)}^{+0.090}_{-0.032}text{(model)}^{+0.001}_{-0.031} text{(parameterisation)}$~GeV.
We explore the sensitivity of photon-beam experiments to axion-like particles (ALPs) with QCD-scale masses whose dominant coupling to the Standard Model is either to photons or gluons. We introduce a novel data-driven method that eliminates the need for knowledge of nuclear form factors or the photon-beam flux when considering coherent Primakoff production off a nuclear target, and show that data collected by the PrimEx experiment could substantially improve the sensitivity to ALPs with $0.03 lesssim m_a lesssim 0.3$ GeV. Furthermore, we explore the potential sensitivity of running the GlueX experiment with a nuclear target and its planned PrimEx-like calorimeter. For the case where the dominant coupling is to gluons, we study photoproduction for the first time, and predict the future sensitivity of the GlueX experiment using its nominal proton target. Finally, we set world-leading limits for both the ALP-gluon coupling and the ALP-photon coupling based on public mass plots.
We propose a method to reveal axions and axion-like particles based on interferometric measurement of neutron beams. We consider an interferometer in which the neutron beam is split in two sub-beams propagating in regions with differently oriented ma gnetic fields. The beam paths and the strength of the magnetic fields are set in such a way that all the contributions to the phase difference but the one due to axion-induced interactions are removed. The resulting phase difference is directly related to the presence of axions. Our results show that such a phase is in principle detectable with neutron interferometry, possibly proving the existence of axions and axion-like particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا