ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum symmetries of Cayley graphs of abelian groups

64   0   0.0 ( 0 )
 نشر من قبل Daniel Gromada
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Daniel Gromada




اسأل ChatGPT حول البحث

We study Cayley graphs of abelian groups from the perspective of quantum symmetries. We develop a general strategy for determining the quantum automorphism groups of such graphs. Applying this procedure, we find the quantum symmetries of the halved cube graph, the folded cube graph and the Hamming graphs.



قيم البحث

اقرأ أيضاً

75 - Dave Witte Morris 2020
Let $X$ be a connected Cayley graph on an abelian group of odd order, such that no two distinct vertices of $X$ have exactly the same neighbours. We show that the direct product $X times K_2$ (also called the canonical double cover of $X$) has only t he obvious automorphisms (namely, the ones that come from automorphisms of its factors $X$ and $K_2$). This means that $X$ is stable. The proof is short and elementary. The theory of direct products implies that $K_2$ can be replaced with members of a much more general family of connected graphs.
189 - Koji Momihara 2020
Davis and Jedwab (1997) established a great construction theory unifying many previously known constructions of difference sets, relative difference sets and divisible difference sets. They introduced the concept of building blocks, which played an i mportant role in the theory. On the other hand, Polhill (2010) gave a construction of Paley type partial difference sets (conference graphs) based on a special system of building blocks, called a covering extended building set, and proved that there exists a Paley type partial difference set in an abelian group of order $9^iv^4$ for any odd positive integer $v>1$ and any $i=0,1$. His result covers all orders of nonelementary abelian groups in which Paley type partial difference sets exist. In this paper, we give new constructions of strongly regular Cayley graphs on abelian groups by extending the theory of building blocks. The constructions are large generalizations of Polhills construction. In particular, we show that for a positive integer $m$ and elementary abelian groups $G_i$, $i=1,2,ldots,s$, of order $q_i^4$ such that $2m,|,q_i+1$, there exists a decomposition of the complete graph on the abelian group $G=G_1times G_2times cdotstimes G_s$ by strongly regular Cayley graphs with negative Latin square type parameters $(u^2,c(u+1),- u+c^2+3 c,c^2+ c)$, where $u=q_1^2q_2^2cdots q_s^2$ and $c=(u-1)/m$. Such strongly regular decompositions were previously known only when $m=2$ or $G$ is a $p$-group. Moreover, we find one more new infinite family of decompositions of the complete graphs by Latin square type strongly regular Cayley graphs. Thus, we obtain many strongly regular graphs with new parameters.
We show that any connected Cayley graph $Gamma$ on an Abelian group of order $2n$ and degree $tilde{Omega}(log n)$ has at most $2^{n+1}(1 + o(1))$ independent sets. This bound is tight up to to the $o(1)$ term when $Gamma$ is bipartite. Our proof is based on Sapozhenkos graph container method and uses the Pl{u}nnecke-Rusza-Petridis inequality from additive combinatorics.
The genus graphs have been studied by many authors, but just a few results concerning in special cases: Planar, Toroidal, Complete, Bipartite and Cartesian Product of Bipartite. We present here a derive general lower bound for the genus of a abelian Cayley graph and construct a family of circulant graphs which reach this bound.
68 - Olga Varghese 2018
We obtain a complete classification of graph products of finite abelian groups whose Cayley graphs with respect to the standard presentations are planar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا