ترغب بنشر مسار تعليمي؟ اضغط هنا

The derivation problem for quandle algebras

244   0   0.0 ( 0 )
 نشر من قبل Mohamed Elhamdadi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The purpose of this paper is to introduce and investigate the notion of derivation for quandle algebras. More precisely, we describe the symmetries on structure constants providing a characterization for a linear map to be a derivation. We obtain a complete characterization of derivations in the case of quandle algebras of emph{dihedral quandles} over fields of characteristic zero, and provide the dimensionality of the Lie algebra of derivations. Many explicit examples and computations are given over both zero and positive characteristic. Furthermore, we investigate inner derivations, in the sense of Schafer for non-associative structures. We obtain necessary conditions for the Lie transformation algebra of quandle algebras of Alexander quandles, with explicit computations in low dimensions.



قيم البحث

اقرأ أيضاً

2-local derivation is a generalized derivation for a Lie algebra, which plays an important role to the study of local properties of the structure of the Lie algebra. In this paper, we prove that every 2-local derivation on the conformal Galilei algebra is a derivation.
Comtrans algebras, arising in web geometry, have two trilinear operations, commutator and translator. We determine a Grobner basis for the comtrans operad, and state a conjecture on its dimension formula. We study multilinear polynomial identities fo r the special commutator $[x,y,z] = xyz-yxz$ and special translator $langle x, y, z rangle = xyz-yzx$ in associative triple systems. In degree 3, the defining identities for comtrans algebras generate all identities. In degree 5, we simplify known identities for each operation and determine new identities relating the operations. In degree 7, we use representation theory of the symmetric group to show that each operation satisfies identities which do not follow from those of lower degree but there are no new identities relating the operations. We use noncommutative Grobner bases to construct the universal associative envelope for the special comtrans algebra of $2 times 2$ matrices.
We prove an analog of the Ado theorem - the existence of a finite-dimensional faithful representation - for a certain kind of finite-dimensional nilpotent Hom-Lie algebras.
For a finite-dimensional Hopf algebra $A$, the McKay matrix $M_V$ of an $A$-module $V$ encodes the relations for tensoring the simple $A$-modules with $V$. We prove results about the eigenvalues and the right and left (generalized) eigenvectors of $M _V$ by relating them to characters. We show how the projective McKay matrix $Q_V$ obtained by tensoring the projective indecomposable modules of $A$ with $V$ is related to the McKay matrix of the dual module of $V$. We illustrate these results for the Drinfeld double $D_n$ of the Taft algebra by deriving expressions for the eigenvalues and eigenvectors of $M_V$ and $Q_V$ in terms of several kinds of Chebyshev polynomials. For the matrix $N_V$ that encodes the fusion rules for tensoring $V$ with a basis of projective indecomposable $D_n$-modules for the image of the Cartan map, we show that the eigenvalues and eigenvectors also have such Chebyshev expressions.
We study anticommutative algebras with the property that commutator of any two multiplications is a derivation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا